Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM

SCADA系统 停工期 风力发电 工程类 可靠性工程 支持向量机 涡轮机 状态监测 计算机科学 实时计算 数据挖掘 人工智能 机械工程 电气工程
作者
Christian Tutivén,Yolanda Vidal,Andrés Insuasty Cárdenas,Lorena Campoverde-Vilela,Wilson Achicanoy
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 4381-4381 被引量:3
标识
DOI:10.3390/en15124381
摘要

To reduce the levelized cost of wind energy, through the reduction in operation and maintenance costs, it is imperative that the wind turbine downtime is reduced through maintenance strategies based on condition monitoring. The standard approach toward this challenge is based on vibration monitoring, which requires the installation of specific tailored sensors that incur associated added costs. On the other hand, the life expectancy of wind parks built during the 1990s wind power boom is dwindling, and data-driven maintenance strategies issued from already accessible supervisory control and data acquisition (SCADA) data is an auspicious competitive solution because no additional sensors are required. Note that it is a major issue to provide fault diagnosis approaches built only on SCADA data, as these data were not established with the objective of being used for condition monitoring but rather for control capacities. The present study posits an early fault diagnosis strategy based exclusively on SCADA data and supports it with results on a real wind park with 18 wind turbines. The contributed methodology is an anomaly detection model based on a one-class support vector machine classifier; that is, it is a semi-supervised approach that trains a decision function that categorizes fresh data as similar or dissimilar to the training set. Therefore, only healthy (normal operation) data is required to train the model, which greatly expands the possibility of employing this methodology (because there is no need for faulty data from the past, and only normal operation SCADA data is needed). The results obtained from the real wind park show that this is a promising strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzzzz完成签到 ,获得积分10
1秒前
2秒前
张雯雯完成签到,获得积分10
4秒前
AI发布了新的文献求助10
6秒前
6秒前
清嘉完成签到,获得积分10
7秒前
10秒前
11秒前
研友_VZG7GZ应助霸气的思柔采纳,获得10
12秒前
12秒前
静静发布了新的文献求助10
15秒前
不换金正七散完成签到,获得积分10
16秒前
Nyxia发布了新的文献求助10
16秒前
16秒前
李健的小迷弟应助瑶625采纳,获得10
18秒前
沉静的红酒完成签到,获得积分10
19秒前
19秒前
脸小呆呆发布了新的文献求助10
19秒前
呆瓜子完成签到,获得积分10
20秒前
爆米花应助王染墨采纳,获得10
21秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
22秒前
23秒前
调皮万怨完成签到,获得积分10
23秒前
无花果应助Nyxia采纳,获得10
23秒前
24秒前
25秒前
25秒前
66289发布了新的文献求助10
26秒前
26秒前
瑶625发布了新的文献求助10
30秒前
30秒前
hh发布了新的文献求助10
30秒前
花椒泡茶发布了新的文献求助10
30秒前
U9A完成签到,获得积分20
31秒前
33秒前
34秒前
阳光下的沙滩城堡完成签到,获得积分10
34秒前
34秒前
情怀应助难过千易采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999708
求助须知:如何正确求助?哪些是违规求助? 3539157
关于积分的说明 11276003
捐赠科研通 3277850
什么是DOI,文献DOI怎么找? 1807761
邀请新用户注册赠送积分活动 884191
科研通“疑难数据库(出版商)”最低求助积分说明 810142