亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM

SCADA系统 停工期 风力发电 工程类 可靠性工程 支持向量机 涡轮机 状态监测 计算机科学 实时计算 数据挖掘 人工智能 机械工程 电气工程
作者
Christian Tutivén,Yolanda Vidal,Andrés Insuasty Cárdenas,Lorena Campoverde-Vilela,Wilson Achicanoy
出处
期刊:Energies [MDPI AG]
卷期号:15 (12): 4381-4381 被引量:3
标识
DOI:10.3390/en15124381
摘要

To reduce the levelized cost of wind energy, through the reduction in operation and maintenance costs, it is imperative that the wind turbine downtime is reduced through maintenance strategies based on condition monitoring. The standard approach toward this challenge is based on vibration monitoring, which requires the installation of specific tailored sensors that incur associated added costs. On the other hand, the life expectancy of wind parks built during the 1990s wind power boom is dwindling, and data-driven maintenance strategies issued from already accessible supervisory control and data acquisition (SCADA) data is an auspicious competitive solution because no additional sensors are required. Note that it is a major issue to provide fault diagnosis approaches built only on SCADA data, as these data were not established with the objective of being used for condition monitoring but rather for control capacities. The present study posits an early fault diagnosis strategy based exclusively on SCADA data and supports it with results on a real wind park with 18 wind turbines. The contributed methodology is an anomaly detection model based on a one-class support vector machine classifier; that is, it is a semi-supervised approach that trains a decision function that categorizes fresh data as similar or dissimilar to the training set. Therefore, only healthy (normal operation) data is required to train the model, which greatly expands the possibility of employing this methodology (because there is no need for faulty data from the past, and only normal operation SCADA data is needed). The results obtained from the real wind park show that this is a promising strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王颖超发布了新的文献求助30
1秒前
BowieHuang应助小黑妞采纳,获得10
4秒前
8秒前
司空以蕊完成签到 ,获得积分10
8秒前
10秒前
12秒前
14秒前
ylh发布了新的文献求助10
15秒前
勤恳八宝粥完成签到 ,获得积分10
16秒前
抹茶发布了新的文献求助10
18秒前
yukky发布了新的文献求助10
21秒前
36秒前
38秒前
不言而喻应助Marciu33采纳,获得10
38秒前
38秒前
123发布了新的文献求助10
39秒前
魔幻的芳完成签到,获得积分10
39秒前
43秒前
火星上的宝马完成签到,获得积分10
43秒前
43秒前
43秒前
俏皮跳跳糖完成签到,获得积分10
44秒前
悲凉的忆南完成签到,获得积分10
46秒前
桃子e发布了新的文献求助10
47秒前
xiaxiao完成签到,获得积分0
48秒前
huan发布了新的文献求助10
49秒前
陈旧完成签到,获得积分10
49秒前
欣欣子完成签到,获得积分10
53秒前
54秒前
sunstar完成签到,获得积分10
56秒前
72219发布了新的文献求助10
58秒前
yxl完成签到,获得积分10
1分钟前
Jasper应助huan采纳,获得10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
烟消云散完成签到,获得积分10
1分钟前
cc完成签到,获得积分20
1分钟前
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
FashionBoy应助抹茶采纳,获得10
1分钟前
钱百川发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294