亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM

SCADA系统 停工期 风力发电 工程类 可靠性工程 支持向量机 涡轮机 状态监测 计算机科学 实时计算 数据挖掘 人工智能 机械工程 电气工程
作者
Christian Tutivén,Yolanda Vidal,Andrés Insuasty Cárdenas,Lorena Campoverde-Vilela,Wilson Achicanoy
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 4381-4381 被引量:3
标识
DOI:10.3390/en15124381
摘要

To reduce the levelized cost of wind energy, through the reduction in operation and maintenance costs, it is imperative that the wind turbine downtime is reduced through maintenance strategies based on condition monitoring. The standard approach toward this challenge is based on vibration monitoring, which requires the installation of specific tailored sensors that incur associated added costs. On the other hand, the life expectancy of wind parks built during the 1990s wind power boom is dwindling, and data-driven maintenance strategies issued from already accessible supervisory control and data acquisition (SCADA) data is an auspicious competitive solution because no additional sensors are required. Note that it is a major issue to provide fault diagnosis approaches built only on SCADA data, as these data were not established with the objective of being used for condition monitoring but rather for control capacities. The present study posits an early fault diagnosis strategy based exclusively on SCADA data and supports it with results on a real wind park with 18 wind turbines. The contributed methodology is an anomaly detection model based on a one-class support vector machine classifier; that is, it is a semi-supervised approach that trains a decision function that categorizes fresh data as similar or dissimilar to the training set. Therefore, only healthy (normal operation) data is required to train the model, which greatly expands the possibility of employing this methodology (because there is no need for faulty data from the past, and only normal operation SCADA data is needed). The results obtained from the real wind park show that this is a promising strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
supermaltose发布了新的文献求助10
29秒前
40秒前
snowskating发布了新的文献求助10
43秒前
supermaltose完成签到,获得积分10
53秒前
ys完成签到 ,获得积分10
1分钟前
Hello应助一这那西采纳,获得50
2分钟前
整齐白秋完成签到 ,获得积分10
2分钟前
snowskating完成签到,获得积分20
2分钟前
我亦化身东海去完成签到,获得积分10
2分钟前
Evooolet发布了新的文献求助10
3分钟前
3分钟前
笨笨山芙完成签到 ,获得积分10
4分钟前
ywzwszl完成签到,获得积分0
4分钟前
MGraceLi_sci完成签到,获得积分10
5分钟前
科研通AI5应助星星采纳,获得30
5分钟前
老迟到的友桃完成签到 ,获得积分10
5分钟前
sharronnie完成签到 ,获得积分10
6分钟前
6分钟前
星星发布了新的文献求助30
6分钟前
6分钟前
shanks发布了新的文献求助10
6分钟前
yi完成签到,获得积分10
6分钟前
shanks完成签到,获得积分10
6分钟前
7分钟前
乐乐应助飘着的鬼采纳,获得10
7分钟前
孙国扬发布了新的文献求助10
7分钟前
7分钟前
酷波er应助孙国扬采纳,获得10
7分钟前
飘着的鬼发布了新的文献求助10
7分钟前
星星完成签到,获得积分20
7分钟前
魔法师完成签到,获得积分0
7分钟前
科研通AI5应助飘着的鬼采纳,获得30
7分钟前
8分钟前
孙国扬发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
JamesPei应助孙国扬采纳,获得10
8分钟前
潘云逸发布了新的文献求助10
8分钟前
潘云逸完成签到 ,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926763
求助须知:如何正确求助?哪些是违规求助? 4196356
关于积分的说明 13032482
捐赠科研通 3968676
什么是DOI,文献DOI怎么找? 2175096
邀请新用户注册赠送积分活动 1192250
关于科研通互助平台的介绍 1102649