亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early Fault Diagnosis Strategy for WT Main Bearings Based on SCADA Data and One-Class SVM

SCADA系统 停工期 风力发电 工程类 可靠性工程 支持向量机 涡轮机 状态监测 计算机科学 实时计算 数据挖掘 人工智能 机械工程 电气工程
作者
Christian Tutivén,Yolanda Vidal,Andrés Insuasty Cárdenas,Lorena Campoverde-Vilela,Wilson Achicanoy
出处
期刊:Energies [MDPI AG]
卷期号:15 (12): 4381-4381 被引量:3
标识
DOI:10.3390/en15124381
摘要

To reduce the levelized cost of wind energy, through the reduction in operation and maintenance costs, it is imperative that the wind turbine downtime is reduced through maintenance strategies based on condition monitoring. The standard approach toward this challenge is based on vibration monitoring, which requires the installation of specific tailored sensors that incur associated added costs. On the other hand, the life expectancy of wind parks built during the 1990s wind power boom is dwindling, and data-driven maintenance strategies issued from already accessible supervisory control and data acquisition (SCADA) data is an auspicious competitive solution because no additional sensors are required. Note that it is a major issue to provide fault diagnosis approaches built only on SCADA data, as these data were not established with the objective of being used for condition monitoring but rather for control capacities. The present study posits an early fault diagnosis strategy based exclusively on SCADA data and supports it with results on a real wind park with 18 wind turbines. The contributed methodology is an anomaly detection model based on a one-class support vector machine classifier; that is, it is a semi-supervised approach that trains a decision function that categorizes fresh data as similar or dissimilar to the training set. Therefore, only healthy (normal operation) data is required to train the model, which greatly expands the possibility of employing this methodology (because there is no need for faulty data from the past, and only normal operation SCADA data is needed). The results obtained from the real wind park show that this is a promising strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的月亮完成签到,获得积分10
4秒前
4秒前
zhuxiaoyue发布了新的文献求助10
4秒前
打打应助辉辉采纳,获得10
4秒前
美美完成签到,获得积分20
6秒前
9秒前
11秒前
13秒前
BeanHahn发布了新的文献求助10
13秒前
14秒前
阿离完成签到,获得积分10
15秒前
17秒前
无题完成签到,获得积分10
17秒前
辉辉发布了新的文献求助10
18秒前
20秒前
21秒前
23秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
25秒前
26秒前
chenyue233完成签到,获得积分10
26秒前
specium发布了新的文献求助10
28秒前
chenyue233发布了新的文献求助10
32秒前
大个应助ECD采纳,获得10
33秒前
34秒前
39秒前
BeanHahn完成签到,获得积分10
42秒前
_u_ii发布了新的文献求助10
43秒前
辉辉完成签到,获得积分10
43秒前
45秒前
Orange应助Eris采纳,获得10
46秒前
49秒前
zcr完成签到,获得积分10
50秒前
久等雨归完成签到,获得积分10
52秒前
53秒前
57秒前
今后应助白晔采纳,获得10
57秒前
1分钟前
善学以致用应助ppg123采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671