乙酰化
神经发生
微管蛋白
轴突
生物
微管
细胞生物学
乙酰转移酶
神经突
轴突引导
分子生物学
生物化学
体外
基因
作者
Ge Lin,Haixu Lin,Run Zhuo,Wei He,Chao Ma,Yan Liu,Mei Liu
标识
DOI:10.1016/j.neulet.2022.136742
摘要
Posttranslational modification (PTM) of tubulin proteins is involved in microtubule dynamics. Acetylation, an important alpha-tubulin PTM, which is regarded as a hallmark event of stable microtubules, often occurs in neurogenesis and axon outgrowth. GCN5/KAT2A is a well-known histone acetyltransferase and has also been reported to hold the activity of nonhistone acetyltransferases, such as acetylated tubulin (Ace-tubulin). In this study, we investigated the role of GCN5/KAT2A in axon growth and neurogenesis. E18 cortical neurons obtained from day 18 embryos of pregnant Sprague–Dawley (SD) rats were cultured and transfected with GCN5 siRNA or treated with the GCN5 inhibitor MB-3. Neural stem cells (NSCs) derived from the cerebral cortexes of E14 SD rats were cultured and differentiated. During differentiation, MB-3 was applied to investigate the effect of GCN5 dysfunction on neurogenesis. The axonal length and the ratio and distribution of acetylated and tyrosinated tubulin (Tyr-tubulin) were evaluated by immunostaining assay. The expression levels of Nestin, Tuj1, acetylated tubulin, and tyrosinated tubulin proteins were analyzed by Western blotting assays. In primary neurons, both GCN5 siRNA and MB-3 treatment reduced acetylated tubulin protein, changed the ratio of acetylated and tyrosinated tubulin, and decreased axonal length. During NSC differentiation, MB-3 application reduced axon outgrowth, decreased acetylated tubulin and altered the distribution of acetylated tubulin and tyrosinated tubulin. This study revealed for the first time that the acetyltransferase GCN5/KAT2A could contribute to axon outgrowth by altering the ratio and distribution of acetylated tubulin.
科研通智能强力驱动
Strongly Powered by AbleSci AI