Graph regularized spatial–spectral subspace clustering for hyperspectral band selection

高光谱成像 模式识别(心理学) 人工智能 计算机科学 聚类分析 判别式 子空间拓扑 图形 主成分分析 空间分析 光谱聚类 邻接表 数学 算法 理论计算机科学 统计
作者
Jun Wang,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:153: 292-302 被引量:37
标识
DOI:10.1016/j.neunet.2022.06.016
摘要

Hyperspectral band selection, which aims to select a small number of bands to reduce data redundancy and noisy bands, has attracted widespread attention in recent years. Many effective clustering-based band selection methods have been proposed to accomplish the band selection task and have achieved satisfying performance. However, most of the previous methods reshape the original hyperspectral images (HSIs) into a set of stretched band vectors, which ignore the spatial information of HSIs and the difference between diverse regions. To address these issues, a graph regularized spatial–spectral subspace clustering method for hyperspectral band selection is proposed in this paper, referred to as GRSC. Specifically, the proposed method adopts superpixel segmentation to preserve the spatial information of HSIs by segmenting their first principal component into diverse homogeneous regions. Then the discriminative latent features are generated from each segmented region to represent the whole band, which can mitigate the effect of noise on the band selection. Finally, a self-representation subspace clustering model and an l2,1-norm regularization are utilized to explore the spectral correlation among all bands. In addition, a similarity graph between region-aware latent features is adaptively learned to preserve the spatial structure of HSIs in the latent representation space. Extensive classification experimental results on three public datasets verify the effectiveness of GRSC over several state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/GRSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gloria发布了新的文献求助10
刚刚
刚刚
哈哈哈哈完成签到,获得积分20
刚刚
沟通亿心发布了新的文献求助10
1秒前
BigBai发布了新的文献求助10
1秒前
wdlc发布了新的文献求助10
1秒前
Drtaoao完成签到 ,获得积分10
2秒前
时尚大白完成签到 ,获得积分10
2秒前
药化的彦祖完成签到,获得积分10
3秒前
传奇3应助学术秘籍采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
Criminology34应助活泼的觅云采纳,获得10
5秒前
5秒前
Jaynes完成签到 ,获得积分10
5秒前
xiaojie2024完成签到,获得积分10
5秒前
5秒前
6秒前
危险源发布了新的文献求助20
6秒前
wdlc完成签到,获得积分10
7秒前
宋阳晨完成签到,获得积分10
8秒前
摸鱼宝完成签到,获得积分10
8秒前
合适的代秋完成签到 ,获得积分10
8秒前
豌豆射手发布了新的文献求助10
9秒前
传奇3应助Gloria采纳,获得10
9秒前
浮游应助三水采纳,获得10
9秒前
xz发布了新的文献求助10
9秒前
9秒前
yjf发布了新的文献求助10
9秒前
9秒前
10秒前
lwq发布了新的文献求助10
10秒前
11秒前
WLL完成签到,获得积分10
11秒前
11秒前
CodeCraft应助自觉书易采纳,获得10
12秒前
烟花应助晶晶采纳,获得10
12秒前
Rubby应助xiaoming采纳,获得20
12秒前
危险源完成签到,获得积分20
12秒前
bkagyin应助莫名采纳,获得10
13秒前
sean晁烁发布了新的文献求助10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015