Graph regularized spatial–spectral subspace clustering for hyperspectral band selection

高光谱成像 模式识别(心理学) 人工智能 计算机科学 聚类分析 判别式 子空间拓扑 图形 主成分分析 空间分析 光谱聚类 邻接表 数学 算法 理论计算机科学 统计
作者
Jun Wang,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:153: 292-302 被引量:10
标识
DOI:10.1016/j.neunet.2022.06.016
摘要

Hyperspectral band selection, which aims to select a small number of bands to reduce data redundancy and noisy bands, has attracted widespread attention in recent years. Many effective clustering-based band selection methods have been proposed to accomplish the band selection task and have achieved satisfying performance. However, most of the previous methods reshape the original hyperspectral images (HSIs) into a set of stretched band vectors, which ignore the spatial information of HSIs and the difference between diverse regions. To address these issues, a graph regularized spatial–spectral subspace clustering method for hyperspectral band selection is proposed in this paper, referred to as GRSC. Specifically, the proposed method adopts superpixel segmentation to preserve the spatial information of HSIs by segmenting their first principal component into diverse homogeneous regions. Then the discriminative latent features are generated from each segmented region to represent the whole band, which can mitigate the effect of noise on the band selection. Finally, a self-representation subspace clustering model and an l2,1-norm regularization are utilized to explore the spectral correlation among all bands. In addition, a similarity graph between region-aware latent features is adaptively learned to preserve the spatial structure of HSIs in the latent representation space. Extensive classification experimental results on three public datasets verify the effectiveness of GRSC over several state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/GRSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初空月儿发布了新的文献求助10
刚刚
1秒前
Dester发布了新的文献求助60
1秒前
youlinn发布了新的文献求助30
1秒前
酷炫的幻丝完成签到 ,获得积分10
1秒前
2秒前
泽锦臻发布了新的文献求助10
3秒前
Koalas应助优雅麦片采纳,获得20
3秒前
专注乐荷发布了新的文献求助10
3秒前
浮游应助MutantKitten采纳,获得10
5秒前
马马完成签到 ,获得积分10
6秒前
6秒前
布图格其完成签到,获得积分10
7秒前
晴天完成签到 ,获得积分10
7秒前
LLL发布了新的文献求助10
9秒前
10秒前
10秒前
丘比特应助LYYYY采纳,获得10
11秒前
12秒前
感冒药发布了新的文献求助10
16秒前
Hello应助benhzh采纳,获得10
16秒前
16秒前
17秒前
narcol发布了新的文献求助30
17秒前
Lucas应助LLL采纳,获得10
18秒前
边快乐9296完成签到,获得积分10
22秒前
Esther发布了新的文献求助50
22秒前
26秒前
31秒前
33秒前
Dester驳回了Akim应助
33秒前
33秒前
香蕉寒梅发布了新的文献求助10
33秒前
Zzz发布了新的文献求助10
33秒前
pilgrim应助晨曦采纳,获得10
33秒前
han123123发布了新的文献求助10
34秒前
36秒前
36秒前
36秒前
完美世界应助初空月儿采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289916
求助须知:如何正确求助?哪些是违规求助? 4441355
关于积分的说明 13827234
捐赠科研通 4323814
什么是DOI,文献DOI怎么找? 2373389
邀请新用户注册赠送积分活动 1368785
关于科研通互助平台的介绍 1332720