Graph regularized spatial–spectral subspace clustering for hyperspectral band selection

高光谱成像 模式识别(心理学) 人工智能 计算机科学 聚类分析 判别式 子空间拓扑 图形 主成分分析 空间分析 光谱聚类 邻接表 数学 算法 理论计算机科学 统计
作者
Jun Wang,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:153: 292-302 被引量:10
标识
DOI:10.1016/j.neunet.2022.06.016
摘要

Hyperspectral band selection, which aims to select a small number of bands to reduce data redundancy and noisy bands, has attracted widespread attention in recent years. Many effective clustering-based band selection methods have been proposed to accomplish the band selection task and have achieved satisfying performance. However, most of the previous methods reshape the original hyperspectral images (HSIs) into a set of stretched band vectors, which ignore the spatial information of HSIs and the difference between diverse regions. To address these issues, a graph regularized spatial–spectral subspace clustering method for hyperspectral band selection is proposed in this paper, referred to as GRSC. Specifically, the proposed method adopts superpixel segmentation to preserve the spatial information of HSIs by segmenting their first principal component into diverse homogeneous regions. Then the discriminative latent features are generated from each segmented region to represent the whole band, which can mitigate the effect of noise on the band selection. Finally, a self-representation subspace clustering model and an l2,1-norm regularization are utilized to explore the spectral correlation among all bands. In addition, a similarity graph between region-aware latent features is adaptively learned to preserve the spatial structure of HSIs in the latent representation space. Extensive classification experimental results on three public datasets verify the effectiveness of GRSC over several state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/GRSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助LLLLLL采纳,获得10
刚刚
温暖天与应助BUG采纳,获得10
4秒前
华仔应助Meggy采纳,获得10
4秒前
5秒前
汉堡包应助游泳的烤鸭采纳,获得10
5秒前
6秒前
上官若男应助王电催化采纳,获得10
7秒前
斯文败类应助天虾第一采纳,获得10
7秒前
嘞是举仔完成签到,获得积分20
7秒前
英姑应助淘气的太阳星采纳,获得10
8秒前
8秒前
8秒前
9秒前
桐桐应助lin采纳,获得10
9秒前
10秒前
CGH20171006应助狂野悟空采纳,获得10
11秒前
12秒前
灵巧秋蝶完成签到 ,获得积分10
12秒前
12秒前
111发布了新的文献求助10
13秒前
那片叶关注了科研通微信公众号
13秒前
14秒前
Tumbleweed668完成签到,获得积分10
14秒前
wendy发布了新的文献求助10
14秒前
15秒前
NexusExplorer应助alone采纳,获得10
15秒前
向言之完成签到,获得积分10
15秒前
16秒前
文艺南松发布了新的文献求助10
17秒前
18秒前
ccc发布了新的文献求助10
19秒前
淡然以柳完成签到 ,获得积分10
19秒前
帅哥发布了新的文献求助10
20秒前
小新小新发布了新的文献求助10
20秒前
lin发布了新的文献求助10
20秒前
我是老大应助HonglinGao采纳,获得10
20秒前
852应助wendy采纳,获得10
21秒前
22秒前
22秒前
wanci应助soso1010采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557