Graph regularized spatial–spectral subspace clustering for hyperspectral band selection

高光谱成像 模式识别(心理学) 人工智能 计算机科学 聚类分析 判别式 子空间拓扑 图形 主成分分析 空间分析 光谱聚类 邻接表 数学 算法 理论计算机科学 统计
作者
Jun Wang,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:Neural Networks [Elsevier BV]
卷期号:153: 292-302 被引量:10
标识
DOI:10.1016/j.neunet.2022.06.016
摘要

Hyperspectral band selection, which aims to select a small number of bands to reduce data redundancy and noisy bands, has attracted widespread attention in recent years. Many effective clustering-based band selection methods have been proposed to accomplish the band selection task and have achieved satisfying performance. However, most of the previous methods reshape the original hyperspectral images (HSIs) into a set of stretched band vectors, which ignore the spatial information of HSIs and the difference between diverse regions. To address these issues, a graph regularized spatial–spectral subspace clustering method for hyperspectral band selection is proposed in this paper, referred to as GRSC. Specifically, the proposed method adopts superpixel segmentation to preserve the spatial information of HSIs by segmenting their first principal component into diverse homogeneous regions. Then the discriminative latent features are generated from each segmented region to represent the whole band, which can mitigate the effect of noise on the band selection. Finally, a self-representation subspace clustering model and an l2,1-norm regularization are utilized to explore the spectral correlation among all bands. In addition, a similarity graph between region-aware latent features is adaptively learned to preserve the spatial structure of HSIs in the latent representation space. Extensive classification experimental results on three public datasets verify the effectiveness of GRSC over several state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/GRSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeyeye发布了新的文献求助10
1秒前
光亮宛白发布了新的文献求助10
1秒前
QDU发布了新的文献求助10
1秒前
敏子完成签到,获得积分10
2秒前
2秒前
ED应助kevimfr采纳,获得10
2秒前
4秒前
KK关注了科研通微信公众号
4秒前
滴滴滴发布了新的文献求助10
4秒前
涵泽发布了新的文献求助10
4秒前
华仔应助coffee333采纳,获得10
4秒前
5秒前
5秒前
5秒前
小马甲应助夕诙采纳,获得50
6秒前
火火发布了新的文献求助10
6秒前
6秒前
7秒前
Sun发布了新的文献求助10
8秒前
4311完成签到,获得积分10
8秒前
8秒前
大个应助眼科的猫医生采纳,获得10
9秒前
落微完成签到,获得积分10
9秒前
郭mm发布了新的文献求助10
10秒前
落落完成签到 ,获得积分10
10秒前
小饭发布了新的文献求助10
10秒前
10秒前
nanyuan123完成签到,获得积分10
10秒前
别闹闹发布了新的文献求助10
11秒前
11秒前
11秒前
所所应助江脸脸采纳,获得10
11秒前
Akim应助Mister.WangK采纳,获得10
11秒前
qiuxiali123完成签到,获得积分20
12秒前
科目三应助烟景采纳,获得10
13秒前
13秒前
苏木完成签到 ,获得积分10
13秒前
光亮宛白完成签到,获得积分20
13秒前
13秒前
sukuyo完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149