Graph regularized spatial–spectral subspace clustering for hyperspectral band selection

高光谱成像 模式识别(心理学) 人工智能 计算机科学 聚类分析 判别式 子空间拓扑 图形 主成分分析 空间分析 光谱聚类 邻接表 数学 算法 统计 理论计算机科学
作者
Jun Wang,Chang Tang,Xiao Zheng,Xinwang Liu,Wei Zhang,En Zhu
出处
期刊:Neural Networks [Elsevier]
卷期号:153: 292-302 被引量:37
标识
DOI:10.1016/j.neunet.2022.06.016
摘要

Hyperspectral band selection, which aims to select a small number of bands to reduce data redundancy and noisy bands, has attracted widespread attention in recent years. Many effective clustering-based band selection methods have been proposed to accomplish the band selection task and have achieved satisfying performance. However, most of the previous methods reshape the original hyperspectral images (HSIs) into a set of stretched band vectors, which ignore the spatial information of HSIs and the difference between diverse regions. To address these issues, a graph regularized spatial–spectral subspace clustering method for hyperspectral band selection is proposed in this paper, referred to as GRSC. Specifically, the proposed method adopts superpixel segmentation to preserve the spatial information of HSIs by segmenting their first principal component into diverse homogeneous regions. Then the discriminative latent features are generated from each segmented region to represent the whole band, which can mitigate the effect of noise on the band selection. Finally, a self-representation subspace clustering model and an l2,1-norm regularization are utilized to explore the spectral correlation among all bands. In addition, a similarity graph between region-aware latent features is adaptively learned to preserve the spatial structure of HSIs in the latent representation space. Extensive classification experimental results on three public datasets verify the effectiveness of GRSC over several state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/GRSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
火星上小土豆完成签到 ,获得积分10
1秒前
1秒前
1秒前
牧羊人发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
null发布了新的文献求助10
2秒前
科研通AI6应助XIZHENG_采纳,获得10
2秒前
SciGPT应助小飞爱科研采纳,获得10
2秒前
天才小榴莲完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
Fred完成签到,获得积分10
3秒前
cici完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
烟花应助wzc采纳,获得10
3秒前
笨笨的誉完成签到,获得积分10
4秒前
yanzi发布了新的文献求助10
4秒前
manyi1972完成签到,获得积分10
4秒前
热爱生活发布了新的文献求助10
4秒前
Akim应助Skrkk采纳,获得10
5秒前
lokiyyy发布了新的文献求助10
5秒前
泥蝶完成签到 ,获得积分10
5秒前
kate发布了新的文献求助10
5秒前
5秒前
5秒前
mm应助达不溜的话语权采纳,获得10
5秒前
大个应助淡然的语山采纳,获得10
6秒前
6秒前
6秒前
Derik发布了新的文献求助10
6秒前
Derik发布了新的文献求助10
6秒前
7秒前
快快跑咯完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661318
求助须知:如何正确求助?哪些是违规求助? 4838264
关于积分的说明 15095308
捐赠科研通 4820082
什么是DOI,文献DOI怎么找? 2579723
邀请新用户注册赠送积分活动 1534013
关于科研通互助平台的介绍 1492767