清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hypergraph Collaborative Network on Vertices and Hyperedges

超图 计算机科学 分类器(UML) 熵(时间箭头) 人工智能 理论计算机科学 机器学习 水准点(测量) 顶点(图论) 数据挖掘 模式识别(心理学) 数学 图形 组合数学 大地测量学 物理 量子力学 地理
作者
Hanrui Wu,Yuguang Yan,Michael K. Ng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:29
标识
DOI:10.1109/tpami.2022.3178156
摘要

In many practical datasets, such as co-citation and co-authorship, relationships across the samples are more complex than pair-wise. Hypergraphs provide a flexible and natural representation for such complex correlations and thus obtain increasing attention in the machine learning and data mining communities. Existing deep learning-based hypergraph approaches seek to learn the latent vertex representations based on either vertices or hyperedges from previous layers and focus on reducing the cross-entropy error over labeled vertices to obtain a classifier. In this paper, we propose a novel model called Hypergraph Collaborative Network (HCoN), which takes the information from both previous vertices and hyperedges into consideration to achieve informative latent representations and further introduces the hypergraph reconstruction error as a regularizer to learn an effective classifier. We evaluate the proposed method on two cases, i.e., semi-supervised vertex and hyperedge classifications. We carry out the experiments on several benchmark datasets and compare our method with several state-of-the-art approaches. Experimental results demonstrate that the performance of the proposed method is better than that of the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUNNYONE完成签到 ,获得积分10
2秒前
平常的羊完成签到 ,获得积分10
7秒前
7秒前
9秒前
橙子发布了新的文献求助10
13秒前
和谐的冬莲完成签到 ,获得积分10
28秒前
zijingsy完成签到 ,获得积分10
34秒前
jh完成签到 ,获得积分10
1分钟前
好运常在完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
1分钟前
1分钟前
666发布了新的文献求助10
1分钟前
1分钟前
seaqiong完成签到 ,获得积分10
1分钟前
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
pretzel发布了新的文献求助10
1分钟前
开朗雅霜发布了新的文献求助10
1分钟前
pretzel完成签到,获得积分10
1分钟前
彭于晏应助666采纳,获得10
2分钟前
打打应助开朗雅霜采纳,获得10
2分钟前
爱的魔力转圈圈完成签到,获得积分10
2分钟前
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
AZN完成签到 ,获得积分10
2分钟前
今后应助我亦化身东海去采纳,获得10
3分钟前
3分钟前
iris发布了新的文献求助10
3分钟前
bkagyin应助iris采纳,获得10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
CHEN完成签到 ,获得积分10
3分钟前
苹果完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
wanci应助十分十分佳采纳,获得10
3分钟前
十分十分佳完成签到,获得积分10
4分钟前
4分钟前
4分钟前
青水完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926941
求助须知:如何正确求助?哪些是违规求助? 4196392
关于积分的说明 13032711
捐赠科研通 3968832
什么是DOI,文献DOI怎么找? 2175128
邀请新用户注册赠送积分活动 1192288
关于科研通互助平台的介绍 1102773