SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae

自编码 人工智能 支持向量机 模式识别(心理学) 粘菌素 肺炎克雷伯菌 主成分分析 分类器(UML) 判别式 计算机科学 深度学习 化学 抗生素 微生物学 生物 大肠杆菌 基因 生物化学
作者
Fatma Uysal Ciloglu,Mehmet Hora,Aycan Gündoğdu,Mehmet Kahraman,Mahmut Tokmakçı,Ömer Aydın
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1221: 340094-340094 被引量:36
标识
DOI:10.1016/j.aca.2022.340094
摘要

Colistin-resistant Klebsiella pneumoniae (ColR-Kp) causes high mortality rates since colistin is used as the last-line antibiotic against multi-drug resistant Gram-negative bacteria. To reduce infections and mortality rates caused by ColR-Kp fast and reliable detection techniques are vital. In this study, we used a label-free surface-enhanced Raman scattering (SERS)-based sensor with machine learning algorithms to discriminate colistin-resistant and susceptible strains of K. pneumoniae. A total of 16 K. pneumoniae strains were incubated in tryptic soy broth (TSB) for 4 h. Collected SERS spectra of ColR-Kp and colistin susceptible K. pneumoniae (ColS-Kp) have shown some spectral differences that hard to discriminate by the naked eye. To extract discriminative features from the dataset, autoencoder and principal component analysis (PCA) that extract features in a non-linear and linear manner, respectively were performed. Extracted features were fed into the support vector machine (SVM) classifier to discriminate K. pneumoniae strains. Classifier performance was evaluated by using features extracted by each feature extraction techniques. Classification results of SVM classifier with extracted features by an autoencoder (autoencoder-SVM) has shown better performance than SVM classifier with extracted features by PCA (PCA-SVM). The accuracy, sensitivity, specificity, and area under curve (AUC) value of the autoencoder-SVM model were found as 94%, 94.2%, 93.8%, and 0.98, respectively. Furthermore, the autoencoder-SVM model has demonstrated statistically significantly better classifier performance than PCA-SVM in terms of accuracy and AUC values. These results illustrate that non-linear features can be more discriminative than linear ones to determine SERS spectral data of antibiotic-resistant and susceptible bacteria. Our methodological approach enables rapid and high accuracy detection of ColR-Kp and ColS-Kp, suggesting that this can be a promising tool to limit colistin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朻安完成签到,获得积分10
刚刚
2秒前
3秒前
4秒前
jeff完成签到,获得积分10
5秒前
59关闭了59文献求助
5秒前
可耐的嫣娆完成签到,获得积分10
9秒前
无花果应助hzz采纳,获得10
9秒前
音悦台发布了新的文献求助30
10秒前
13秒前
threewei完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
清欢完成签到 ,获得积分10
15秒前
16秒前
xixun关注了科研通微信公众号
16秒前
17秒前
17秒前
解语花发布了新的文献求助50
18秒前
啊啊啊完成签到,获得积分10
19秒前
小琛完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
23秒前
23秒前
36038138完成签到 ,获得积分10
25秒前
XRenaissance发布了新的文献求助10
26秒前
搬砖发布了新的文献求助10
27秒前
27秒前
酱紫完成签到 ,获得积分10
27秒前
淡定妙海发布了新的文献求助10
27秒前
NexusExplorer应助盖世汤圆采纳,获得20
28秒前
28秒前
Azyyyy完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助30
29秒前
29秒前
陈昇发布了新的文献求助10
29秒前
cccf发布了新的文献求助100
30秒前
31秒前
冯俊驰发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408