SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae

自编码 人工智能 支持向量机 模式识别(心理学) 粘菌素 肺炎克雷伯菌 主成分分析 分类器(UML) 判别式 计算机科学 深度学习 化学 抗生素 微生物学 生物 大肠杆菌 生物化学 基因
作者
Fatma Uysal Ciloglu,Mehmet Hora,Aycan Gündoğdu,Mehmet Kahraman,Mahmut Tokmakçı,Ömer Aydın
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1221: 340094-340094 被引量:30
标识
DOI:10.1016/j.aca.2022.340094
摘要

Colistin-resistant Klebsiella pneumoniae (ColR-Kp) causes high mortality rates since colistin is used as the last-line antibiotic against multi-drug resistant Gram-negative bacteria. To reduce infections and mortality rates caused by ColR-Kp fast and reliable detection techniques are vital. In this study, we used a label-free surface-enhanced Raman scattering (SERS)-based sensor with machine learning algorithms to discriminate colistin-resistant and susceptible strains of K. pneumoniae. A total of 16 K. pneumoniae strains were incubated in tryptic soy broth (TSB) for 4 h. Collected SERS spectra of ColR-Kp and colistin susceptible K. pneumoniae (ColS-Kp) have shown some spectral differences that hard to discriminate by the naked eye. To extract discriminative features from the dataset, autoencoder and principal component analysis (PCA) that extract features in a non-linear and linear manner, respectively were performed. Extracted features were fed into the support vector machine (SVM) classifier to discriminate K. pneumoniae strains. Classifier performance was evaluated by using features extracted by each feature extraction techniques. Classification results of SVM classifier with extracted features by an autoencoder (autoencoder-SVM) has shown better performance than SVM classifier with extracted features by PCA (PCA-SVM). The accuracy, sensitivity, specificity, and area under curve (AUC) value of the autoencoder-SVM model were found as 94%, 94.2%, 93.8%, and 0.98, respectively. Furthermore, the autoencoder-SVM model has demonstrated statistically significantly better classifier performance than PCA-SVM in terms of accuracy and AUC values. These results illustrate that non-linear features can be more discriminative than linear ones to determine SERS spectral data of antibiotic-resistant and susceptible bacteria. Our methodological approach enables rapid and high accuracy detection of ColR-Kp and ColS-Kp, suggesting that this can be a promising tool to limit colistin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
皮卡丘发布了新的文献求助10
3秒前
4秒前
6秒前
迷路岩发布了新的文献求助10
6秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
wure10完成签到 ,获得积分10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
9秒前
朴素豪发布了新的文献求助10
9秒前
Ava应助蒋彪采纳,获得10
9秒前
大个应助发发采纳,获得10
10秒前
11秒前
11秒前
美满冷安发布了新的文献求助10
12秒前
无辜书南发布了新的文献求助10
12秒前
13秒前
善学以致用应助皮卡丘采纳,获得30
15秒前
16秒前
16秒前
正直美女发布了新的文献求助10
17秒前
juno完成签到,获得积分10
17秒前
饭老师完成签到,获得积分10
17秒前
opcy发布了新的文献求助20
18秒前
WW完成签到,获得积分10
19秒前
脑洞疼应助MOhy采纳,获得10
20秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728832
求助须知:如何正确求助?哪些是违规求助? 3273843
关于积分的说明 9983753
捐赠科研通 2989158
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747973