SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae

自编码 人工智能 支持向量机 模式识别(心理学) 粘菌素 肺炎克雷伯菌 主成分分析 分类器(UML) 判别式 计算机科学 深度学习 化学 抗生素 微生物学 生物 大肠杆菌 生物化学 基因
作者
Fatma Uysal Ciloglu,Mehmet Hora,Aycan Gündoğdu,Mehmet Kahraman,Mahmut Tokmakçı,Ömer Aydın
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1221: 340094-340094 被引量:33
标识
DOI:10.1016/j.aca.2022.340094
摘要

Colistin-resistant Klebsiella pneumoniae (ColR-Kp) causes high mortality rates since colistin is used as the last-line antibiotic against multi-drug resistant Gram-negative bacteria. To reduce infections and mortality rates caused by ColR-Kp fast and reliable detection techniques are vital. In this study, we used a label-free surface-enhanced Raman scattering (SERS)-based sensor with machine learning algorithms to discriminate colistin-resistant and susceptible strains of K. pneumoniae. A total of 16 K. pneumoniae strains were incubated in tryptic soy broth (TSB) for 4 h. Collected SERS spectra of ColR-Kp and colistin susceptible K. pneumoniae (ColS-Kp) have shown some spectral differences that hard to discriminate by the naked eye. To extract discriminative features from the dataset, autoencoder and principal component analysis (PCA) that extract features in a non-linear and linear manner, respectively were performed. Extracted features were fed into the support vector machine (SVM) classifier to discriminate K. pneumoniae strains. Classifier performance was evaluated by using features extracted by each feature extraction techniques. Classification results of SVM classifier with extracted features by an autoencoder (autoencoder-SVM) has shown better performance than SVM classifier with extracted features by PCA (PCA-SVM). The accuracy, sensitivity, specificity, and area under curve (AUC) value of the autoencoder-SVM model were found as 94%, 94.2%, 93.8%, and 0.98, respectively. Furthermore, the autoencoder-SVM model has demonstrated statistically significantly better classifier performance than PCA-SVM in terms of accuracy and AUC values. These results illustrate that non-linear features can be more discriminative than linear ones to determine SERS spectral data of antibiotic-resistant and susceptible bacteria. Our methodological approach enables rapid and high accuracy detection of ColR-Kp and ColS-Kp, suggesting that this can be a promising tool to limit colistin resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘学术发布了新的文献求助10
2秒前
火的信仰完成签到 ,获得积分10
3秒前
pipi完成签到,获得积分10
4秒前
5秒前
7秒前
Owen应助像昨天一样晚安采纳,获得10
9秒前
11秒前
11秒前
zm发布了新的文献求助100
12秒前
芮明霞发布了新的文献求助10
12秒前
lm发布了新的文献求助10
15秒前
15秒前
0713发布了新的文献求助10
15秒前
15秒前
潇湘学术完成签到,获得积分10
15秒前
18秒前
18秒前
18秒前
19秒前
19秒前
如歌发布了新的文献求助10
19秒前
隐形曼青应助正直尔白采纳,获得10
21秒前
21秒前
22秒前
23秒前
wanci应助可可采纳,获得10
23秒前
善学以致用应助FAN采纳,获得10
24秒前
我要发nature完成签到,获得积分10
24秒前
花花完成签到,获得积分10
25秒前
xiaolihaha17发布了新的文献求助10
25秒前
墩墩应助核动力牛马采纳,获得20
25秒前
vali发布了新的文献求助10
26秒前
Grijze发布了新的文献求助10
27秒前
wei发布了新的文献求助10
27秒前
Owen应助科研通管家采纳,获得10
28秒前
彳亍1117应助科研通管家采纳,获得20
29秒前
慕青应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571