Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: An empirical study of 2.5D solutions

计算机科学 分割 过度拟合 人工智能 卷积神经网络 图像分割 推论 医学影像学 尺度空间分割 计算 深度学习 联营 机器学习 模式识别(心理学) 计算机视觉 人工神经网络 算法
作者
Yichi Zhang,Qingcheng Liao,Le Ding,Jicong Zhang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:99: 102088-102088 被引量:64
标识
DOI:10.1016/j.compmedimag.2022.102088
摘要

Recently, deep convolutional neural networks have achieved great success for medical image segmentation. However, unlike segmentation of natural images, most medical images such as MRI and CT are volumetric data. In order to make full use of volumetric information, 3D CNNs are widely used. However, 3D CNNs suffer from higher inference time and computation cost, which hinders their further clinical applications. Additionally, with the increased number of parameters, the risk of overfitting is higher, especially for medical images where data and annotations are expensive to acquire. To issue this problem, many 2.5D segmentation methods have been proposed to make use of volumetric spatial information with less computation cost. Despite these works lead to improvements on a variety of segmentation tasks, to the best of our knowledge, there has not previously been a large-scale empirical comparison of these methods. In this paper, we aim to present a review of the latest developments of 2.5D methods for volumetric medical image segmentation. Additionally, to compare the performance and effectiveness of these methods, we provide an empirical study of these methods on three representative segmentation tasks involving different modalities and targets. Our experimental results highlight that 3D CNNs may not always be the best choice. Despite all these 2.5D methods can bring performance gains to 2D baseline, not all the methods hold the benefits on different datasets. We hope the results and conclusions of our study will prove useful for the community on exploring and developing efficient volumetric medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小书包完成签到,获得积分10
1秒前
1秒前
英俊的铭应助KKK研采纳,获得10
3秒前
3秒前
科研通AI5应助西扬采纳,获得10
4秒前
luoman5656完成签到,获得积分10
5秒前
6秒前
乐乐应助hui采纳,获得30
6秒前
天真书竹发布了新的文献求助10
7秒前
FashionBoy应助fl采纳,获得10
7秒前
超帅忆枫发布了新的文献求助10
9秒前
捞大完成签到,获得积分10
9秒前
10秒前
五档张诊人完成签到,获得积分10
10秒前
12秒前
12秒前
wenxin666发布了新的文献求助10
12秒前
小蜜蜂发布了新的文献求助10
14秒前
14秒前
Owen应助笑看风云采纳,获得10
14秒前
韭黄完成签到,获得积分20
16秒前
KouZL完成签到,获得积分10
16秒前
温瞳完成签到,获得积分10
16秒前
肚肚嘿嘿发布了新的文献求助30
17秒前
19秒前
19秒前
fl发布了新的文献求助10
19秒前
20秒前
fff完成签到 ,获得积分10
20秒前
春秋完成签到,获得积分10
21秒前
OP完成签到,获得积分10
21秒前
星辰大海应助小蜜蜂采纳,获得10
21秒前
llll发布了新的文献求助10
23秒前
23秒前
KIQING发布了新的文献求助10
24秒前
24秒前
xxxllllll发布了新的文献求助10
25秒前
林芟发布了新的文献求助10
27秒前
gzf213完成签到,获得积分10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772748
求助须知:如何正确求助?哪些是违规求助? 3318318
关于积分的说明 10189553
捐赠科研通 3033100
什么是DOI,文献DOI怎么找? 1664051
邀请新用户注册赠送积分活动 796079
科研通“疑难数据库(出版商)”最低求助积分说明 757245