Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: An empirical study of 2.5D solutions

计算机科学 分割 过度拟合 人工智能 卷积神经网络 图像分割 推论 医学影像学 尺度空间分割 计算 深度学习 联营 机器学习 模式识别(心理学) 计算机视觉 人工神经网络 算法
作者
Yichi Zhang,Qingcheng Liao,Le Ding,Jicong Zhang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:99: 102088-102088 被引量:55
标识
DOI:10.1016/j.compmedimag.2022.102088
摘要

Recently, deep convolutional neural networks have achieved great success for medical image segmentation. However, unlike segmentation of natural images, most medical images such as MRI and CT are volumetric data. In order to make full use of volumetric information, 3D CNNs are widely used. However, 3D CNNs suffer from higher inference time and computation cost, which hinders their further clinical applications. Additionally, with the increased number of parameters, the risk of overfitting is higher, especially for medical images where data and annotations are expensive to acquire. To issue this problem, many 2.5D segmentation methods have been proposed to make use of volumetric spatial information with less computation cost. Despite these works lead to improvements on a variety of segmentation tasks, to the best of our knowledge, there has not previously been a large-scale empirical comparison of these methods. In this paper, we aim to present a review of the latest developments of 2.5D methods for volumetric medical image segmentation. Additionally, to compare the performance and effectiveness of these methods, we provide an empirical study of these methods on three representative segmentation tasks involving different modalities and targets. Our experimental results highlight that 3D CNNs may not always be the best choice. Despite all these 2.5D methods can bring performance gains to 2D baseline, not all the methods hold the benefits on different datasets. We hope the results and conclusions of our study will prove useful for the community on exploring and developing efficient volumetric medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱友卉应助和谐的芷珊采纳,获得10
1秒前
鲲鹏戏龙发布了新的文献求助10
2秒前
冰糖葫芦完成签到 ,获得积分10
3秒前
4秒前
niuya完成签到,获得积分10
4秒前
5秒前
wangying发布了新的文献求助30
9秒前
10秒前
兴奋翼完成签到,获得积分10
10秒前
思源应助1场久下未停的雨采纳,获得10
11秒前
单薄怜寒发布了新的文献求助10
12秒前
爱吃猫的鱼完成签到,获得积分10
14秒前
17秒前
英姑应助畅快芝麻采纳,获得10
17秒前
放逐之龙完成签到 ,获得积分10
19秒前
酷波er应助GUGU采纳,获得10
20秒前
选民很头疼完成签到,获得积分10
20秒前
毕十三发布了新的文献求助10
20秒前
21秒前
22秒前
芝麻糊应助小黄采纳,获得10
25秒前
清爽明辉发布了新的文献求助10
26秒前
28秒前
单纯芮发布了新的文献求助10
30秒前
31秒前
英俊的铭应助毕十三采纳,获得10
31秒前
guozizi发布了新的文献求助20
32秒前
34秒前
清爽明辉完成签到,获得积分10
34秒前
34秒前
天涯倦客完成签到,获得积分10
34秒前
搞怪惜梦发布了新的文献求助30
35秒前
35秒前
36秒前
优秀星星完成签到,获得积分10
38秒前
38秒前
美伢发布了新的文献求助10
39秒前
凡凡发布了新的文献求助20
39秒前
黄小佳发布了新的文献求助10
39秒前
米唐米唐完成签到,获得积分10
39秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462542
求助须知:如何正确求助?哪些是违规求助? 3056077
关于积分的说明 9050722
捐赠科研通 2745731
什么是DOI,文献DOI怎么找? 1506546
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677