亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bridging 2D and 3D segmentation networks for computation-efficient volumetric medical image segmentation: An empirical study of 2.5D solutions

计算机科学 分割 过度拟合 人工智能 卷积神经网络 图像分割 推论 医学影像学 尺度空间分割 计算 深度学习 联营 机器学习 模式识别(心理学) 计算机视觉 人工神经网络 算法
作者
Yichi Zhang,Qingcheng Liao,Le Ding,Jicong Zhang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:99: 102088-102088 被引量:64
标识
DOI:10.1016/j.compmedimag.2022.102088
摘要

Recently, deep convolutional neural networks have achieved great success for medical image segmentation. However, unlike segmentation of natural images, most medical images such as MRI and CT are volumetric data. In order to make full use of volumetric information, 3D CNNs are widely used. However, 3D CNNs suffer from higher inference time and computation cost, which hinders their further clinical applications. Additionally, with the increased number of parameters, the risk of overfitting is higher, especially for medical images where data and annotations are expensive to acquire. To issue this problem, many 2.5D segmentation methods have been proposed to make use of volumetric spatial information with less computation cost. Despite these works lead to improvements on a variety of segmentation tasks, to the best of our knowledge, there has not previously been a large-scale empirical comparison of these methods. In this paper, we aim to present a review of the latest developments of 2.5D methods for volumetric medical image segmentation. Additionally, to compare the performance and effectiveness of these methods, we provide an empirical study of these methods on three representative segmentation tasks involving different modalities and targets. Our experimental results highlight that 3D CNNs may not always be the best choice. Despite all these 2.5D methods can bring performance gains to 2D baseline, not all the methods hold the benefits on different datasets. We hope the results and conclusions of our study will prove useful for the community on exploring and developing efficient volumetric medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CJW完成签到 ,获得积分10
26秒前
嘻嘻完成签到,获得积分10
53秒前
57秒前
k001boyxw完成签到,获得积分10
58秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
阿龙啊完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
hugeyoung完成签到,获得积分10
3分钟前
3分钟前
marco发布了新的文献求助10
3分钟前
3分钟前
英姑应助marco采纳,获得10
3分钟前
4分钟前
4分钟前
张泽崇发布了新的文献求助10
4分钟前
姜忆霜完成签到 ,获得积分10
5分钟前
5分钟前
英俊的铭应助科研通管家采纳,获得20
5分钟前
小蘑菇应助科研通管家采纳,获得10
5分钟前
5分钟前
bing完成签到 ,获得积分10
5分钟前
shelly7788完成签到 ,获得积分10
5分钟前
草木完成签到 ,获得积分20
5分钟前
小雨完成签到,获得积分10
6分钟前
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
完美世界应助科研通管家采纳,获得10
7分钟前
华仔应助科研通管家采纳,获得10
7分钟前
8分钟前
8分钟前
kyokyoro完成签到,获得积分10
8分钟前
mengliu完成签到,获得积分10
8分钟前
9分钟前
汉堡包应助科研通管家采纳,获得10
9分钟前
深情安青应助科研通管家采纳,获得10
9分钟前
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216