材料科学
离子电导率
电解质
锂(药物)
化学工程
共价有机骨架
电化学
电化学窗口
共价键
电导率
聚合物
离子键合
准固态
膜
储能
纳米复合材料
电极
纳米技术
离子
化学
复合材料
有机化学
物理化学
内分泌学
功率(物理)
工程类
物理
医学
量子力学
生物化学
色素敏化染料
多孔性
作者
Zhen Hou,Shuixin Xia,Chaoqun Niu,Yuepeng Pang,Hao Sun,Zhiqi Li,Yuxi Xu,Shiyou Zheng
出处
期刊:Carbon energy
[Wiley]
日期:2022-05-28
卷期号:4 (4): 506-516
被引量:39
摘要
Abstract Solid polymer electrolyte is one of the most promising avenues to construct next‐generation energy storage systems with high energy density, high safety, and flexibility, yet the low ionic conductivity at room temperature and poor high‐voltage tolerance have limited their practical applications. To address the above issues, we design and synthesize a highly crystalline, vinyl‐functionalized covalent organic framework (V‐COF) rationally grafted with ether‐based segments through solvent‐free in situ polymerization. V‐COF can afford a fast Li + conduction highway along the one‐dimensional nanochannels and improve the high‐voltage stability of ether‐based electrolytes due to the rigid and electrochemically stable networks. The as‐formed solid‐state electrolyte membranes demonstrate a superior ionic conductivity of 1.1 × 10 −4 S cm −1 at 40°C, enhanced wide electrochemical window up to 5.0 V, and high Young's modulus of 92 MPa. The Li symmetric cell demonstrates ultralong stable cycling over 600 h at a current density of 0.1 mA cm −2 (40°C). The assembled solid‐state Li|LiFePO 4 cells show a superior initial specific capacity of 136 mAh g −1 at 1 C (1 C = 170 mA g −1 ) and a high capacity retention rate of 84% after 300 cycles. This study provides a novel and scalable approach toward high‐performance solid ether‐based lithium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI