亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TransDose: a transformer-based UNet model for fast and accurate dose calculation for MR-LINACs

通量 核医学 蒙特卡罗方法 直线粒子加速器 残余物 基本事实 放射治疗计划 物理 梁(结构) 放射治疗 数学 计算机科学 医学 统计 算法 光学 放射科 人工智能 辐照 核物理学
作者
Fan Xiao,Jiajun Cai,Xuanru Zhou,Linghong Zhou,Ting Song,Yongbao Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (12): 125013-125013 被引量:12
标识
DOI:10.1088/1361-6560/ac7376
摘要

Abstract Objective . To present a transformer-based UNet model (TransDose) for fast and accurate dose calculation for magnetic resonance-linear accelerators (MR-LINACs). Approach . A 2D fluence map from each beam was first projected into a 3D fluence volume and then fed into the TransDose model together with patient density volume and output predicted beam dose. The proposed TransDose model combined a 3D residual UNet with a transformer encoder, where convolutional layers extracted the volumetric spatial features, and the transformer encoder processed the long-range dependencies in a global space. Ninety-eight cases with four tumor sites (brain, nasopharynx, lung, and rectum) treated with fixed-beam intensity-modulated radiotherapy were included in the dataset; 78 cases were used for model training and validation; and 20 cases were used for testing. The ground-truth beam doses were calculated with Monte Carlo (MC) simulations within 1% statistical uncertainty and magnetic field strength B = 1.5 T in the superior and inferior direction. Beam angles from the training and validation datasets were rotated 2–5 times, and doses were recalculated to augment the datasets. Results . The dose-volume histograms and indices between the predicted and MC doses showed good consistency. The average 3D γ -passing rates (3%/2 mm, for dose regions above 10% of maximum dose) were 99.13 ± 0.89% (brain), 98.31 ± 1.92% (nasopharynx), 98.74 ± 0.70% (lung), and 99.28 ± 0.25% (rectum). The average dose calculation time, which included the fluence projection and model prediction, was less than 310 ms for each beam. Significance . We successfully developed a transformer-based UNet dose calculation model—TransDose in magnetic fields. Its accuracy and efficiency indicated its potential for use in online adaptive plan optimization for MR-LINACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41秒前
聪慧千亦发布了新的文献求助10
46秒前
聪慧千亦完成签到,获得积分10
50秒前
58秒前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
2分钟前
Mipe发布了新的文献求助10
2分钟前
任性的一斩完成签到,获得积分10
2分钟前
Mipe完成签到,获得积分10
2分钟前
sino-ft发布了新的文献求助10
2分钟前
初见发布了新的文献求助50
2分钟前
2分钟前
3分钟前
布丁果酱巧克力完成签到,获得积分10
3分钟前
3分钟前
宇文非笑完成签到 ,获得积分10
3分钟前
归尘应助科研通管家采纳,获得100
3分钟前
3分钟前
大模型应助yoyo采纳,获得10
3分钟前
伍佰发布了新的文献求助10
3分钟前
隐形曼青应助伍佰采纳,获得10
3分钟前
3分钟前
3分钟前
yoyo发布了新的文献求助10
3分钟前
dddd12345发布了新的文献求助30
3分钟前
初见完成签到,获得积分10
4分钟前
酷波er应助Cuisine采纳,获得10
4分钟前
爱寻完成签到 ,获得积分10
5分钟前
慕青应助阿柴采纳,获得10
5分钟前
5分钟前
迷茫的一代完成签到,获得积分10
6分钟前
Cuisine完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067260
捐赠科研通 2750124
什么是DOI,文献DOI怎么找? 1509045
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896