A Low-Cost High-Performance Data Augmentation for Deep Learning-Based Skin Lesion Classification

计算机科学 人工智能 机器学习 皮肤损伤 资源(消歧) 任务(项目管理) 深度学习 医学 病理 计算机网络 管理 经济
作者
Shing Chuan Shen,Mengjuan Xu,Fan Zhang,Pengfei Shao,Honghong Liu,Liang Xu,Chi Zhang,Peng Liu,Zhihong Zhang,Peng Yao,Ronald X. Xu
出处
期刊:BME frontiers [AAAS00]
卷期号:2022 被引量:25
标识
DOI:10.34133/2022/9765307
摘要

Objective and Impact Statement. There is a need to develop high-performance and low-cost data augmentation strategies for intelligent skin cancer screening devices that can be deployed in rural or underdeveloped communities. The proposed strategy can not only improve the classification performance of skin lesions but also highlight the potential regions of interest for clinicians' attention. This strategy can also be implemented in a broad range of clinical disciplines for early screening and automatic diagnosis of many other diseases in low resource settings. Methods. We propose a high-performance data augmentation strategy of search space 101, which can be combined with any model through a plug-and-play mode and search for the best argumentation method for a medical database with low resource cost. Results. With EfficientNets as a baseline, the best BACC of HAM10000 is 0.853, outperforming the other published models of "single-model and no-external-database" for ISIC 2018 Lesion Diagnosis Challenge (Task 3). The best average AUC performance on ISIC 2017 achieves 0.909 (±0.015), exceeding most of the ensembling models and those using external datasets. Performance on Derm7pt archives the best BACC of 0.735 (±0.018) ahead of all other related studies. Moreover, the model-based heatmaps generated by Grad-CAM++ verify the accurate selection of lesion features in model judgment, further proving the scientific rationality of model-based diagnosis. Conclusion. The proposed data augmentation strategy greatly reduces the computational cost for clinically intelligent diagnosis of skin lesions. It may also facilitate further research in low-cost, portable, and AI-based mobile devices for skin cancer screening and therapeutic guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHUI完成签到,获得积分10
刚刚
刚刚
1秒前
蕾蕾完成签到,获得积分10
2秒前
大模型应助藏进森林采纳,获得10
3秒前
3秒前
Owen应助gy采纳,获得10
3秒前
wenxiang发布了新的文献求助10
3秒前
lanxinyue应助顺心曼香采纳,获得10
3秒前
小明完成签到,获得积分20
3秒前
timelq发布了新的文献求助10
3秒前
桐桐应助丫丫采纳,获得10
4秒前
5秒前
weihua93发布了新的文献求助10
5秒前
5秒前
山橘月发布了新的文献求助10
5秒前
6秒前
6秒前
Ysn完成签到,获得积分10
7秒前
小黄完成签到,获得积分20
7秒前
7秒前
monthli发布了新的文献求助10
8秒前
8秒前
彩色布条完成签到,获得积分10
8秒前
9秒前
淡淡的凝冬完成签到,获得积分10
9秒前
小手冰凉关注了科研通微信公众号
10秒前
廿九发布了新的文献求助10
11秒前
LCct完成签到,获得积分20
11秒前
CNAxiaozhu7应助timelq采纳,获得10
12秒前
牛肉怪完成签到,获得积分10
12秒前
12秒前
MQRR发布了新的文献求助200
13秒前
13秒前
Jasper应助11采纳,获得10
14秒前
钟涛完成签到 ,获得积分10
14秒前
丘比特应助开心的火龙果采纳,获得10
14秒前
15秒前
慕青应助勤劳汽车采纳,获得10
15秒前
BTW完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458503
求助须知:如何正确求助?哪些是违规求助? 3053354
关于积分的说明 9036090
捐赠科研通 2742647
什么是DOI,文献DOI怎么找? 1504430
科研通“疑难数据库(出版商)”最低求助积分说明 695291
邀请新用户注册赠送积分活动 694454