Deep‐Learning‐Enabled Crack Detection and Analysis in Commercial Lithium‐Ion Battery Cathodes

材料科学 电池(电) 阴极 电极 降级(电信) 电化学 锂离子电池 锂(药物) 纳米尺度 深度学习 纳米技术 复合材料 计算机科学 人工智能 电气工程 物理化学 内分泌学 功率(物理) 工程类 化学 物理 电信 医学 量子力学
作者
Tianyu Fu,Federico Monaco,Jizhou Li,Kai Zhang,Qingxi Yuan,Peter Cloetens,P. Pianetta,Yijin Liu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (39) 被引量:13
标识
DOI:10.1002/adfm.202203070
摘要

Abstract In Li‐ion batteries, the mechanical degradation initiated by micro cracks is one of the bottlenecks for enhancing the performance. Quantifying the crack formation and evolution in complex composite electrodes can provide important insights into electrochemical behaviors under prolonged and/or aggressive cycling. However, observation and interpretation of the complicated crack patterns in battery electrodes through imaging experiments are often time‐consuming, labor intensive, and subjective. Herein, a deep learning‐based approach is developed to extract the crack patterns from nanoscale hard X‐ray holo‐tomography data of a commercial 18650‐type battery cathode. Efficient and effective quantification of the damage heterogeneity with automation and statistical significance is demonstrated. The crack characteristics are further associated with the active particles’ packing densities and a potentially viable architectural design is discussed for suppressing the structural degradation in an industry‐relevant battery configuration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻羊发布了新的文献求助10
1秒前
沙拉发布了新的文献求助10
1秒前
iNk应助陈淑玲采纳,获得10
1秒前
科研通AI2S应助BWZ采纳,获得10
1秒前
1秒前
2秒前
Ade完成签到,获得积分10
3秒前
3秒前
lx840518发布了新的文献求助10
3秒前
兴奋大开完成签到,获得积分10
4秒前
虚幻羊完成签到,获得积分20
4秒前
Meng完成签到,获得积分10
5秒前
张掖完成签到,获得积分10
5秒前
Lucas应助kangkang采纳,获得10
6秒前
大晨完成签到,获得积分10
6秒前
哈哈哈haha发布了新的文献求助20
7秒前
cc发布了新的文献求助10
7秒前
Yolo发布了新的文献求助10
7秒前
7秒前
allenice完成签到,获得积分10
7秒前
8秒前
8秒前
音乐发布了新的文献求助10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
华仔应助沙拉采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
Owen应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得30
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
Orange应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助夏夏采纳,获得10
10秒前
英俊的铭应助夏夏采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
万能图书馆应助夏夏采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762