错义突变
生物
联想(心理学)
失智症
突变
细胞生物学
细胞质
痴呆
疾病
计算生物学
遗传学
医学
心理学
基因
病理
心理治疗师
作者
Xiaoming Zhou,Lily Sumrow,Kyuto Tashiro,Lillian B. Sutherland,Daifei Liu,Tian Qin,Masato Kato,Glen Liszczak,Steven L. McKnight
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2022-06-30
卷期号:377 (6601)
被引量:67
标识
DOI:10.1126/science.abn5582
摘要
Protein domains of low sequence complexity do not fold into stable, three-dimensional structures. Nevertheless, proteins with these sequences assist in many aspects of cell organization, including assembly of nuclear and cytoplasmic structures not surrounded by membranes. The dynamic nature of these cellular assemblies is caused by the ability of low-complexity domains (LCDs) to transiently self-associate through labile, cross-β structures. Mechanistic studies useful for the study of LCD self-association have evolved over the past decade in the form of simple assays of phase separation. Here, we have used such assays to demonstrate that the interactions responsible for LCD self-association can be dictated by labile protein structures poised close to equilibrium between the folded and unfolded states. Furthermore, missense mutations causing Charcot-Marie-Tooth disease, frontotemporal dementia, and Alzheimer's disease manifest their pathophysiology in vitro and in cultured cell systems by enhancing the stability of otherwise labile molecular structures formed upon LCD self-association.
科研通智能强力驱动
Strongly Powered by AbleSci AI