原位
调制(音乐)
钙钛矿(结构)
材料科学
曲面(拓扑)
光电子学
化学
地理
气象学
结晶学
声学
几何学
数学
物理
作者
Bo Li,Xin Wu,Shoufeng Zhang,Zhen Li,Danpeng Gao,Xiankai Chen,Shuang Xiao,Chu‐Chen Chueh,Alex K.‐Y. Jen,Zonglong Zhu
标识
DOI:10.1016/j.cej.2022.137144
摘要
Surface defect modulation utilizing Fused-ring electron acceptor molecules achieved a dramatically enhanced open-circuit voltage from 1.079 V to 1.278 V and a record efficiency up to 3.31% for double Cs 2 AgBiBr 6 perovskite solar cells. • Fused-ring acceptors were used to passivate Cs 2 AgBiBr 6 perovskite. • Nonradiative recombination was suppressed by passivating Ag-exposed surface defects. • The modified double PSCs achieved a record efficiency of 3.31%. • Excellent long-term light-heat stabilities were achieved, with > 97% PCE sustained. Lead-free double perovskites have drawn increasing attention for addressing the stability and toxicity challenges from lead-based halide perovskites. However, their power conversion efficiencies (PCE) are still far behind that of Pb-based perovskite solar cells (PSCs) mainly because of the severe energy loss. Herein, we successfully employed the fused-ring electron acceptor (FREA) molecules to passivate defects in Cs 2 AgBiBr 6 -based double PSCs to realize a dramatically enhanced open-circuit voltage ( V OC ) from 1.079 V to 1.278 V and a champion PCE up to 3.31%, which is the highest efficiency for double PSCs to date. The strong binding of C≡N and N=C–S groups on FREA with Ag-exposed surface of Cs 2 AgBiBr 6 effectively decreased surface trap densities and considerably suppressed non-radiative recombination. Moreover, the passivated devices showed superior long-term stability, which maintained 98.5% and 97.2% of the initial efficiency under continuous AM 1.5 G illumination and 85 ℃ heating for 300 h, respectively. This work manifests the importance of the rational design of functional passivation molecules to improve the performance and stability of double PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI