光敏剂
前药
纳米载体
光动力疗法
卡铂
化学
卟啉
结合
PEG比率
毒性
药理学
药物输送
顺铂
化疗
医学
生物化学
有机化学
内科学
数学
经济
数学分析
财务
作者
Renjie Su,Xiangwen Zhang,Qianhua Peng,Wenbin Wang
标识
DOI:10.1080/09205063.2022.2087275
摘要
Nanomedicine has developed as a potential technique for successful cancer therapy. A simple supramolecular self-assembly process is a helpful strategy for generating carrier-free nanodrugs. Mixing photodynamic treatment with chemotherapy has been sought to obtain a high therapeutic impact. In this study, we effectively construct a nanocarrier (CD-Por-PEG: Ada-CPT-Pt(IV)) combined with Carboplatin prodrug (Ada-CPT-Pt(IV)) and photosensitizer porphyrin (CD-Por-PEG) by host-guest interactions to accomplish stimuli-response combination treatment. Supported by greater spatial control of the binding ratio among host-guest molecules, Carboplatin and porphyrin were independently altered with β-cyclodextrin and adamantane to produce the amphiphilic host-guest combination for sequential self-assembly into therapeutic nanoparticles. The colloidal stability of the produced CD-Por-PEG: Ada-CPT-Pt(IV)-NPs was excellent, with an average hydrodynamic diameter of ∼170 nm. The microscopy images showed that CD-Por-PEG: Ada-CPT-Pt(IV) could aggregate cells and generate ROS after light irradiation (630 nm). Monotherapy had a cytotoxicity three times greater than the CD-Por-PEG: Ada-CPT-Pt(IV) nanoparticles. Studies in mice carrying SUNE1 nasopharyngeal tumours showed that nanoparticles effectively suppressed tumour development without causing systemic damage in this examination. The current self-assembly nanosystem makes precise control over the photosensitizer and drug loading possible ratio. It reduces the systemic adverse toxicity issues of drugs carrier, making this system ideal for nasopharyngeal cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI