亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improvement of spatial resolution of photoacoustic microscopy based on physical model and deep learning

卷积神经网络 图像分辨率 显微镜 计算机科学 人工智能 基本事实 深度学习 分辨率(逻辑) 生物医学中的光声成像 分割 穿透深度 声学显微镜 计算机视觉 材料科学 光学 物理
作者
Xianlin Song,Rui Wang,Xiaohai Yu,Ganyu Chen,Gang Hu,Zhongyi Wu
标识
DOI:10.1117/12.2636267
摘要

Photoacoustic imaging is a new noninvasive medical imaging method in recent years. It combines the advantages of high resolution and rich contrast of optical imaging with the advantages of high penetration depth of acoustic imaging. It can provide safe, high-resolution and high – contrast imaging. As an important branch of photoacoustic imaging, photoacoustic microscopy can achieve higher-resolution imaging. However, the poor axial resolution relative to lateral resolution has always been a limitation. In recent years, deep learning has shown certain advantages in processing of photoacoustic image. Therefore, this paper proposes to integrate the U-net semantic segmentation model with the simulation platform of photoacoustic microscopy based on K-Wave to improve the axial resolution of photoacoustic microscopy. Firstly, the dataset (including B-scans and their corresponding ground truth images) required for deep learning is obtained by using the simulation platform of photoacoustic microscopy based on K-Wave. The dataset is randomly divided into training set and test set with a ratio of 7:1. In the training process, the B-scans are used as the input of U-Net based convolutional neural network architecture, while the ground truth images are the desired output of the neural network. Experimental measurements were performed on carbon nanoparticles, which measured an increase in axial resolution by a factor of ~ 4.2. This method further improves the axial resolution, which helps to obtain the structural features of the tissue more accurately, and provides theoretical guidance for the treatment and diagnosis of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
33完成签到 ,获得积分10
2秒前
飞常爱你哦完成签到 ,获得积分20
2秒前
斯文败类应助FATFAT采纳,获得10
5秒前
7秒前
7秒前
Dec发布了新的文献求助10
7秒前
xiaoyuyuyu完成签到 ,获得积分10
9秒前
10秒前
matrixu完成签到,获得积分10
14秒前
莫问题完成签到,获得积分10
14秒前
mushroom完成签到 ,获得积分10
17秒前
19秒前
24秒前
搜集达人应助xjz采纳,获得10
25秒前
一休发布了新的文献求助10
26秒前
所所应助科研通管家采纳,获得10
28秒前
28秒前
罗伊黄完成签到,获得积分10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
28秒前
能干的人完成签到,获得积分10
29秒前
小黑完成签到,获得积分10
30秒前
zyq完成签到,获得积分10
33秒前
Jasper应助一休采纳,获得10
35秒前
36秒前
zyq发布了新的文献求助10
39秒前
Emma发布了新的文献求助10
40秒前
友好小土豆完成签到 ,获得积分10
44秒前
46秒前
47秒前
47秒前
51秒前
xjz发布了新的文献求助10
52秒前
明天更好完成签到 ,获得积分10
52秒前
53秒前
呋喃发布了新的文献求助10
53秒前
李健应助Emma采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604