Improvement of spatial resolution of photoacoustic microscopy based on physical model and deep learning

卷积神经网络 图像分辨率 显微镜 计算机科学 人工智能 基本事实 深度学习 分辨率(逻辑) 生物医学中的光声成像 分割 穿透深度 声学显微镜 计算机视觉 材料科学 光学 物理
作者
Xianlin Song,Rui Wang,Xiaohai Yu,Ganyu Chen,Gang Hu,Zhongyi Wu
标识
DOI:10.1117/12.2636267
摘要

Photoacoustic imaging is a new noninvasive medical imaging method in recent years. It combines the advantages of high resolution and rich contrast of optical imaging with the advantages of high penetration depth of acoustic imaging. It can provide safe, high-resolution and high – contrast imaging. As an important branch of photoacoustic imaging, photoacoustic microscopy can achieve higher-resolution imaging. However, the poor axial resolution relative to lateral resolution has always been a limitation. In recent years, deep learning has shown certain advantages in processing of photoacoustic image. Therefore, this paper proposes to integrate the U-net semantic segmentation model with the simulation platform of photoacoustic microscopy based on K-Wave to improve the axial resolution of photoacoustic microscopy. Firstly, the dataset (including B-scans and their corresponding ground truth images) required for deep learning is obtained by using the simulation platform of photoacoustic microscopy based on K-Wave. The dataset is randomly divided into training set and test set with a ratio of 7:1. In the training process, the B-scans are used as the input of U-Net based convolutional neural network architecture, while the ground truth images are the desired output of the neural network. Experimental measurements were performed on carbon nanoparticles, which measured an increase in axial resolution by a factor of ~ 4.2. This method further improves the axial resolution, which helps to obtain the structural features of the tissue more accurately, and provides theoretical guidance for the treatment and diagnosis of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高完成签到,获得积分20
1秒前
Cupid发布了新的文献求助30
1秒前
搜集达人应助信仰采纳,获得10
1秒前
威武的念波完成签到 ,获得积分10
1秒前
2秒前
求文献完成签到,获得积分10
3秒前
3秒前
Jasper应助一口蒜苗采纳,获得15
4秒前
heypee完成签到,获得积分10
5秒前
You完成签到 ,获得积分10
5秒前
Ava应助yzWang采纳,获得10
7秒前
Lsy发布了新的文献求助50
7秒前
7秒前
kotea完成签到,获得积分10
8秒前
科研通AI2S应助胡图图采纳,获得10
9秒前
暮色发布了新的文献求助10
10秒前
英俊的铭应助明亮的香薇采纳,获得10
10秒前
10秒前
kelvin发布了新的文献求助50
10秒前
10秒前
高高发布了新的文献求助10
13秒前
13秒前
13秒前
欣喜惜筠完成签到,获得积分10
14秒前
14秒前
14秒前
YuLu完成签到 ,获得积分10
15秒前
15秒前
甜橙汁完成签到,获得积分10
15秒前
大模型应助酸菜炖粉条采纳,获得10
15秒前
水仙完成签到,获得积分10
16秒前
小狒狒完成签到,获得积分10
16秒前
wzt完成签到,获得积分10
16秒前
Hayat发布了新的文献求助20
17秒前
林平之发布了新的文献求助10
18秒前
酷波er应助zyj采纳,获得10
18秒前
林平之发布了新的文献求助10
19秒前
林平之发布了新的文献求助10
19秒前
润色发布了新的文献求助30
19秒前
hs完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547