Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using AS-OCT images

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 计算机视觉 算法
作者
Xiaoqing Zhang,Zunjie Xiao,Huazhu Fu,Yan Hu,Jin Yuan,Yanwu Xu,Risa Higashita,Jiang Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102499-102499 被引量:33
标识
DOI:10.1016/j.media.2022.102499
摘要

Nuclear cataract (NC) is a leading eye disease for blindness and vision impairment globally. Accurate and objective NC grading/classification is essential for clinically early intervention and cataract surgery planning. Anterior segment optical coherence tomography (AS-OCT) images are capable of capturing the nucleus region clearly and measuring the opacity of NC quantitatively. Recently, clinical research has suggested that the opacity correlation and repeatability between NC severity levels and the average nucleus density on AS-OCT images is high with the interclass and intraclass analysis. Moreover, clinical research has suggested that opacity distribution is uneven on the nucleus region, indicating that the opacities from different nucleus regions may play different roles in NC diagnosis. Motivated by the clinical priors, this paper proposes a simple yet effective region-based integration-and-recalibration attention (RIR), which integrates multiple feature map region representations and recalibrates the weights of each region via softmax attention adaptively. This region recalibration strategy enables the network to focus on high contribution region representations and suppress less useful ones. We combine the RIR block with the residual block to form a Residual-RIR module, and then a sequence of Residual-RIR modules are stacked to a deep network named region-based integration-and-recalibration network (RIR-Net), to predict NC severity levels automatically. The experiments on a clinical AS-OCT image dataset and two OCT datasets demonstrate that our method outperforms strong baselines and previous state-of-the-art methods. Furthermore, attention weight visualization analysis and ablation studies verify the capability of our RIR-Net for adjusting the relative importance of different regions in feature maps dynamically, agreeing with the clinical research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JUSTDOIT发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
1秒前
李健应助隐形的烧鹅采纳,获得10
1秒前
xiaohui完成签到,获得积分20
1秒前
薏米人儿完成签到 ,获得积分10
1秒前
科研通AI6应助难度采纳,获得10
2秒前
2秒前
隐形曼青应助yyymmm采纳,获得10
2秒前
Trever发布了新的文献求助10
4秒前
Dr.发布了新的文献求助10
4秒前
4秒前
陈九运完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
LTT发布了新的文献求助10
5秒前
6秒前
金子悠月完成签到,获得积分10
6秒前
6秒前
tcf应助恩禮采纳,获得10
6秒前
武状元发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
酷波er应助www采纳,获得10
7秒前
俭朴晓凡发布了新的文献求助10
8秒前
可爱的函函应助Qi采纳,获得10
8秒前
重要白山发布了新的文献求助30
8秒前
调皮老头完成签到,获得积分10
8秒前
冷艳的寒天完成签到,获得积分10
8秒前
8秒前
虚拟的含灵完成签到,获得积分10
9秒前
善学以致用应助伏坎采纳,获得10
9秒前
9秒前
科研通AI6应助Xhhhhhh采纳,获得30
9秒前
10秒前
积极黄豆应助俗甜采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649113
求助须知:如何正确求助?哪些是违规求助? 4777225
关于积分的说明 15046529
捐赠科研通 4807973
什么是DOI,文献DOI怎么找? 2571189
邀请新用户注册赠送积分活动 1527771
关于科研通互助平台的介绍 1486697