Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using AS-OCT images

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 计算机视觉 算法
作者
Xiaoqing Zhang,Zunjie Xiao,Huazhu Fu,Yan Hu,Jin Yuan,Yanwu Xu,Risa Higashita,Jiang Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102499-102499 被引量:33
标识
DOI:10.1016/j.media.2022.102499
摘要

Nuclear cataract (NC) is a leading eye disease for blindness and vision impairment globally. Accurate and objective NC grading/classification is essential for clinically early intervention and cataract surgery planning. Anterior segment optical coherence tomography (AS-OCT) images are capable of capturing the nucleus region clearly and measuring the opacity of NC quantitatively. Recently, clinical research has suggested that the opacity correlation and repeatability between NC severity levels and the average nucleus density on AS-OCT images is high with the interclass and intraclass analysis. Moreover, clinical research has suggested that opacity distribution is uneven on the nucleus region, indicating that the opacities from different nucleus regions may play different roles in NC diagnosis. Motivated by the clinical priors, this paper proposes a simple yet effective region-based integration-and-recalibration attention (RIR), which integrates multiple feature map region representations and recalibrates the weights of each region via softmax attention adaptively. This region recalibration strategy enables the network to focus on high contribution region representations and suppress less useful ones. We combine the RIR block with the residual block to form a Residual-RIR module, and then a sequence of Residual-RIR modules are stacked to a deep network named region-based integration-and-recalibration network (RIR-Net), to predict NC severity levels automatically. The experiments on a clinical AS-OCT image dataset and two OCT datasets demonstrate that our method outperforms strong baselines and previous state-of-the-art methods. Furthermore, attention weight visualization analysis and ablation studies verify the capability of our RIR-Net for adjusting the relative importance of different regions in feature maps dynamically, agreeing with the clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
能能关注了科研通微信公众号
1秒前
2秒前
泡泡球发布了新的文献求助10
2秒前
3秒前
一把过发布了新的文献求助10
3秒前
3秒前
啊哈哈哈完成签到,获得积分10
3秒前
5AGAME发布了新的文献求助10
4秒前
Ray发布了新的文献求助10
4秒前
4秒前
Orange应助呼呼虫采纳,获得10
4秒前
aa完成签到 ,获得积分10
5秒前
干净的冷松完成签到,获得积分10
5秒前
1111完成签到,获得积分10
5秒前
ZG完成签到,获得积分10
5秒前
郭珺完成签到,获得积分10
5秒前
莎莎士比亚完成签到,获得积分10
5秒前
弓长发布了新的文献求助10
5秒前
科研牛马完成签到,获得积分10
6秒前
萱1988发布了新的文献求助10
7秒前
7秒前
xyf完成签到,获得积分10
7秒前
Engen发布了新的文献求助10
7秒前
Emilia完成签到,获得积分10
7秒前
8秒前
伶俐的书南完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
碳土不凡完成签到 ,获得积分10
8秒前
114555发布了新的文献求助10
9秒前
他方世界发布了新的文献求助10
9秒前
9秒前
啦啦啦完成签到,获得积分10
9秒前
迷路的晓旋完成签到,获得积分10
10秒前
禁止通行发布了新的文献求助10
10秒前
Ray完成签到,获得积分10
12秒前
fmd123完成签到,获得积分20
12秒前
我想吃薯条完成签到 ,获得积分10
12秒前
poppysss发布了新的文献求助10
13秒前
可爱的函函应助一把过采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582