Attention to region: Region-based integration-and-recalibration networks for nuclear cataract classification using AS-OCT images

人工智能 计算机科学 残余物 模式识别(心理学) 深度学习 计算机视觉 算法
作者
Xiaoqing Zhang,Zunjie Xiao,Huazhu Fu,Yan Hu,Jin Yuan,Yanwu Xu,Risa Higashita,Jiang Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102499-102499 被引量:33
标识
DOI:10.1016/j.media.2022.102499
摘要

Nuclear cataract (NC) is a leading eye disease for blindness and vision impairment globally. Accurate and objective NC grading/classification is essential for clinically early intervention and cataract surgery planning. Anterior segment optical coherence tomography (AS-OCT) images are capable of capturing the nucleus region clearly and measuring the opacity of NC quantitatively. Recently, clinical research has suggested that the opacity correlation and repeatability between NC severity levels and the average nucleus density on AS-OCT images is high with the interclass and intraclass analysis. Moreover, clinical research has suggested that opacity distribution is uneven on the nucleus region, indicating that the opacities from different nucleus regions may play different roles in NC diagnosis. Motivated by the clinical priors, this paper proposes a simple yet effective region-based integration-and-recalibration attention (RIR), which integrates multiple feature map region representations and recalibrates the weights of each region via softmax attention adaptively. This region recalibration strategy enables the network to focus on high contribution region representations and suppress less useful ones. We combine the RIR block with the residual block to form a Residual-RIR module, and then a sequence of Residual-RIR modules are stacked to a deep network named region-based integration-and-recalibration network (RIR-Net), to predict NC severity levels automatically. The experiments on a clinical AS-OCT image dataset and two OCT datasets demonstrate that our method outperforms strong baselines and previous state-of-the-art methods. Furthermore, attention weight visualization analysis and ablation studies verify the capability of our RIR-Net for adjusting the relative importance of different regions in feature maps dynamically, agreeing with the clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
orixero应助火星上寄凡采纳,获得10
4秒前
自信玥完成签到,获得积分10
6秒前
7秒前
自信玥发布了新的文献求助10
8秒前
9秒前
wt发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
songjin完成签到 ,获得积分10
14秒前
15秒前
Wen发布了新的文献求助10
17秒前
健壮问兰发布了新的文献求助10
17秒前
18秒前
19秒前
慕青应助wt采纳,获得10
20秒前
沐夕完成签到,获得积分10
20秒前
20秒前
无霁之都发布了新的文献求助10
23秒前
23秒前
闪闪天晴完成签到,获得积分10
24秒前
麋鹿完成签到 ,获得积分10
25秒前
科研通AI2S应助123yyu采纳,获得10
25秒前
wallonce发布了新的文献求助30
26秒前
28秒前
今后应助小新小新采纳,获得10
28秒前
29秒前
31秒前
绿麦盲区完成签到,获得积分10
32秒前
wmk完成签到,获得积分10
34秒前
chenyunxia完成签到 ,获得积分10
36秒前
36秒前
zjw发布了新的文献求助20
36秒前
38秒前
丶呆久自然萌完成签到,获得积分10
39秒前
40秒前
Qianyun发布了新的文献求助10
40秒前
CodeCraft应助wallonce采纳,获得10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304540
求助须知:如何正确求助?哪些是违规求助? 2938522
关于积分的说明 8489066
捐赠科研通 2613005
什么是DOI,文献DOI怎么找? 1427058
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647465