狨猴
视网膜
神经纤维层
视网膜
星形胶质细胞
神经节细胞层
生物
内丛状层
内核层
无长突细胞
视神经
视网膜神经节细胞
解剖
眼科
神经科学
医学
中枢神经系统
古生物学
作者
Carol Lin,Abduqodir Toychiev,Reynolds Kwame Ablordeppey,Nefeli Slavi,Miduturu Srinivas,Alexandra Benavente-Pérez
摘要
To describe the effect of myopic eye growth on the structure and distribution of astrocytes, vasculature, and retinal nerve fiber layer thickness, which are critical for inner retinal tissue homeostasis and survival. Astrocyte and capillary distribution, retinal nerve fiber (RNFL), and ganglion cell layer (GCL) thicknesses were assessed using immunochemistry and spectral domain optical coherence tomography on eleven retinas of juvenile common marmosets (Callithrix Jacchus), six of which were induced with lens-induced myopia (refraction, Rx: -7.01 ± 1.8D). Five untreated age-matched juvenile marmoset retinas were used as controls (Rx: -0.74 ± 0.4D). Untreated marmoset eyes grew normally, their RNFL thickened and their astrocyte numbers were associated with RNFL thickness. Marmosets with induced myopia did not show this trend and, on the contrary, had reduced astrocyte numbers, increased GFAP-immunopositive staining, thinner RNFL, lower peripheral capillary branching, and increased numbers of string vessels. The myopic changes in retinal astrocytes, vasculature, and retinal nerve fiber layer thickness suggest a reorganization of the astrocyte and vascular templates during myopia development and progression. Whether these adaptations are beneficial or harmful to the retina remains to be investigated.
科研通智能强力驱动
Strongly Powered by AbleSci AI