Soil-derived nutrients by plant roots can be limited under increasing environmental stresses such as higher incidence and duration of heat and drought, which affect agricultural productivity and environmental quality in multiple ways. These unprecedented challenges urge the adoption of novel and resource-efficient strategies to close yield gaps. Foliar fertilization has been well recognized for two decades to affect crop productivity, however, the consequences of foliar spray under multiple environmental stresses remains elusive, albeit evidence to resilience agriculture has grown widely. Here, we provide a focused overview of recent developments unravelling the significance of foliar nutrition under multifaceted agricultural production scenario(s). The mechanisms involved in the absorption and translocation of foliar-applied minerals are critically discussed to highlight their efficiency and effectiveness. The potential of foliar fertilization in improving crop yield and quality under environmental stresses has been evaluated based on a meta-analysis. Foliar-applied fertilizers showed higher crop plants yield and quality traits by 15–19% and 9–29%, respectively, under different environmental stresses. The knowledge gaps to improve the effectiveness of foliar nutrition from economic and ecological perspectives has been discussed. This comprehensive review draws attention to the potential of foliar fertilization to close yield gaps and endure agriculture sustainability, particularly under hostile soils and deteriorating environmental conditions.