Artificial intelligence and duplex ultrasound for detection of carotid artery disease

医学 狭窄 放射科 超声波 颈动脉疾病 颈动脉 颈总动脉 颈内动脉 前瞻性队列研究 内科学 颈动脉内膜切除术
作者
Ali Kordzadeh,Alan Askari,Omar Ahmad Abbassi,Nikolaos Sanoudos,Vahaj Mohaghegh,Hassan Shirvani
出处
期刊:Vascular [SAGE]
卷期号:31 (6): 1187-1193 被引量:6
标识
DOI:10.1177/17085381221107465
摘要

Objective The aim of this study is to evaluate the feasibility, applicability and accuracy of artificial intelligence (AI) in the detection of normal versus carotid artery disease through greyscale static duplex ultrasound (DUS) images. Methods A prospective image acquisition of individuals undergoing duplex sonography for the suspicion of carotid artery disease at a single hospital was conducted. A total of n = 156 images of normal and stenotic carotid arteries (based on NASCET criteria) were evaluated by using geometry group network based on convolutional neural network (CNN) architecture. Outcome was reported based on sensitivity, specificity and accuracy of the network (artificial intelligence) for detecting normal versus stenotic carotid arteries as well as various categories of carotid artery stenosis. Results The overall sensitivity, specificity and accuracy of AI in the detection of normal carotid artery was 91%, 86% and 92%, respectively, and for any carotid artery stenosis was 87%, 82% and 90%, respectively. Subgroup analyses demonstrated that the network has the ability to detect stenotic carotid artery images (<50%) versus normal with a sensitivity of 92%, specificity of 87% and an accuracy of 94%. This value (sensitivity, specificity and accuracy) for group of 50–75% stenosis versus normal was 84%, 80% and 88% and for carotid artery disease of more than 75% was 90%, 83% and 92%, respectively. Conclusion This study demonstrates the feasibility, applicability and accuracy of artificial intelligence in the detection of carotid artery disease in greyscale static DUS images. This network has the potential to be used as a stand-alone software or to be embedded in any DUS machine. This can enhance carotid artery disease recognition with limited or no vascular experience or serve as a stratification tool for tertiary referral, further imaging and overall management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Never stall发布了新的文献求助10
6秒前
拥挤而独行完成签到,获得积分10
7秒前
kkk完成签到,获得积分10
9秒前
Anni-QQ发布了新的文献求助10
11秒前
12秒前
vv123456ha完成签到,获得积分10
12秒前
科目三应助陈思思采纳,获得10
13秒前
乐乐应助kkk采纳,获得10
13秒前
15秒前
我是雪豹完成签到,获得积分10
15秒前
小呵点完成签到 ,获得积分10
18秒前
18秒前
毒翼完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
fountainli发布了新的文献求助10
21秒前
evisure发布了新的文献求助10
21秒前
小福宝完成签到,获得积分10
22秒前
22秒前
23秒前
jin发布了新的文献求助10
24秒前
彭佳丽发布了新的文献求助10
25秒前
哈哈哈发布了新的文献求助10
25秒前
EvenCai应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得50
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
riho完成签到,获得积分10
26秒前
cocolu应助科研通管家采纳,获得10
26秒前
klb13应助科研通管家采纳,获得10
26秒前
26秒前
Solarenergy完成签到,获得积分0
26秒前
cocolu应助科研通管家采纳,获得10
26秒前
27秒前
27秒前
cocolu应助Anni-QQ采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308488
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506015
捐赠科研通 2616798
什么是DOI,文献DOI怎么找? 1429796
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649019