计算机科学
特征(语言学)
人工智能
特征学习
嵌入
语义鸿沟
语义特征
编码
模态(人机交互)
语义学(计算机科学)
自然语言处理
模式
代表(政治)
情报检索
模式识别(心理学)
图像(数学)
图像检索
法学
哲学
程序设计语言
化学
社会学
基因
政治
生物化学
语言学
社会科学
政治学
作者
Shiping Li,Min Cao,Min Zhang
标识
DOI:10.1109/icassp43922.2022.9746846
摘要
Text-based person search aims to retrieve images of a certain pedestrian by a textual description. The key challenge of this task is to eliminate the inter-modality gap and achieve the feature alignment across modalities. In this paper, we propose a semantic-aligned embedding method for text-based person search, in which the feature alignment across modalities is achieved by automatically learning the semantic-aligned visual features and textual features. First, we introduce two Transformer-based backbones to encode robust feature representations of the images and texts. Second, we design a semantic-aligned feature aggregation network to adaptively select and aggregate features with the same semantics into part-aware features, which is achieved by a multi-head attention module constrained by a cross-modality part alignment loss and a diversity loss. Experimental results on the CUHK-PEDES and Flickr30K datasets show that our method achieves state-of-the-art performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI