Elucidating the Mechanistic Origin of a Spin State-Dependent FeNx–C Catalyst toward Organic Contaminant Oxidation via Peroxymonosulfate Activation

化学 催化作用 部分 煅烧 电子转移 激进的 氧化态 穆斯堡尔谱学 光化学 电子顺磁共振 过硫酸盐 无机化学 有机化学 结晶学 核磁共振 物理
作者
Bofan Zhang,Xianquan Li,Kazuhiko Akiyama,Paul A. Bingham,Shiro Kubuki
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (2): 1321-1330 被引量:130
标识
DOI:10.1021/acs.est.1c05980
摘要

Atomically dispersed metals on nitrogen-doped carbon matrices have attracted extensive interest in the removal of refractory organic pollutants. However, a thorough exploration of the particular structure for each active site and specific effects of these sites still remains elusive. Herein, an Fe-pyridinic N4 structure in a single-atom catalyst (FeNx-C) was constructed using a facile pyrolysis strategy, and it exhibited superior catalytic activity in peroxymonosulfate (PMS) activation toward organic contaminant oxidation. The various Fe species and relative amounts of each Fe site in the FeNx-C catalyst were validated using X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy, which showed critical dependencies on the precursor ratio and calcination temperature. The positive correlations between relative content of high-spin state species (FeII and FeIII) and catalytic performance were found to determine the reactive species generation and electron transfer pathway in the FeNx-C/PMS system. Moreover, catalytic performance and theoretical calculation results revealed that FeII-N4 in the high-spin state (S = 2) tends to activate PMS to form sulfate and hydroxyl radicals via a one-electron transfer process, while the FeIII-N4 moiety (S = 5/2) is prone to high-valent iron species generation with lower free energy. Benefiting from finely tuned active sites, a single-atom FeNx-C catalyst achieved favorable applicability in actual wastewater treatment with efficient resistance of the common water matrix. The present work advances the mechanistic understanding of spin state-dependent persulfate activation in single-atom catalysts and provides guidance to design a superior catalyst based on spin state descriptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nihil完成签到,获得积分10
1秒前
活力的泥猴桃完成签到 ,获得积分10
2秒前
2秒前
3秒前
obito完成签到,获得积分10
3秒前
娜行发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
Ck完成签到,获得积分10
5秒前
烦烦完成签到 ,获得积分10
6秒前
百宝发布了新的文献求助10
7秒前
jiangnan发布了新的文献求助10
7秒前
Sev完成签到,获得积分10
7秒前
7秒前
可耐的乘风完成签到,获得积分10
7秒前
FIN应助obito采纳,获得30
8秒前
啾啾发布了新的文献求助10
8秒前
爱学习的向日葵完成签到,获得积分10
9秒前
9秒前
华仔应助泛泛之交采纳,获得10
10秒前
雪123发布了新的文献求助10
10秒前
10秒前
11秒前
charon发布了新的文献求助10
11秒前
凶狠的食铁兽完成签到,获得积分10
11秒前
星辰大海应助花花啊采纳,获得10
11秒前
华仔应助liuyingke采纳,获得10
11秒前
HEIKU应助还不如瞎写采纳,获得10
12秒前
liuliumei发布了新的文献求助30
13秒前
zhouzhou完成签到,获得积分10
13秒前
sure发布了新的文献求助10
13秒前
上官若男应助Hu111采纳,获得10
14秒前
务实的紫伊完成签到,获得积分10
14秒前
春风得意完成签到,获得积分10
14秒前
爱你呃不可能完成签到,获得积分10
14秒前
WSY完成签到,获得积分20
14秒前
666星爷留下了新的社区评论
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672