Spectral variable selection based on least absolute shrinkage and selection operator with ridge-adding homotopy

弹性网正则化 Lasso(编程语言) 正规化(语言学) 数学 同伦 特征选择 数学优化 算法 应用数学 卡鲁什-库恩-塔克条件 计算机科学 回归 统计 人工智能 万维网 纯数学
作者
Haoran Li,Jisheng Dai,Jianbo Xiao,Xiaobo Zou,Tao Chen,Melvin Holmose
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:221: 104487-104487 被引量:6
标识
DOI:10.1016/j.chemolab.2021.104487
摘要

The least absolute shrinkage and selection operator (LASSO) is an established sparse representation approach for variable selection, and its performance relies on finding a good value for the regularization parameter, typically through cross-validation. However, cross-validation is a computationally intensive step and requires a properly determined search range and step size. In the present study, the ridge-adding homotopy (RAH) algorithm is applied with LASSO to overcome the aforementioned shortcomings. The homotopy algorithm can fit the entire solution of the LASSO problem by tracking the Karush-Kuhn Tucker (KKT) conditions and yields a finite number of potential regularization parameters. Considering the singularities, a M×1 random ridge vector will be added to the KKT conditions, which ensures that only one element is added to or removed from the active set. Finally, we can select the optimal regularization parameter by traversing the potential parameters with modelling and evaluation metrics. The selected variables are the nonzero elements in the sparse regression coefficient vector derived by the optimal regularization parameter. The proposed method has been demonstrated on three near-infrared (NIR) datasets with regard to wavelength selection and calibration. The results suggested that the “RAH-LASSO ​+ ​PLS” outperforms “LASSO ​+ ​PLS” and “full-wavelength PLS” in most cases. Importantly, the RAH method provides a systematic, as opposed to trial-and-error, procedure to determine the regularization parameter in LASSO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANG完成签到 ,获得积分10
1秒前
Rez完成签到,获得积分10
1秒前
Anoxia发布了新的文献求助10
1秒前
听白完成签到 ,获得积分10
1秒前
zhinian28完成签到,获得积分10
1秒前
gossie完成签到,获得积分10
1秒前
2秒前
万能图书馆应助缥缈傥采纳,获得10
2秒前
joysa完成签到,获得积分10
3秒前
3秒前
Yvan完成签到,获得积分10
3秒前
优美怀蕊完成签到,获得积分10
4秒前
顾矜应助凄凉山谷的风采纳,获得10
5秒前
11完成签到,获得积分10
5秒前
包容胡萝卜完成签到,获得积分10
5秒前
BUG完成签到,获得积分10
6秒前
明理的问柳完成签到 ,获得积分10
6秒前
爆米花应助兴奋芷采纳,获得10
6秒前
Lqiqiqi完成签到,获得积分10
6秒前
彭于晏应助IAMXC采纳,获得10
7秒前
7秒前
颖颖子完成签到,获得积分10
7秒前
嘟嘟请让一让完成签到,获得积分10
8秒前
孔雀翎发布了新的文献求助10
8秒前
001完成签到 ,获得积分10
8秒前
jiaozhiping完成签到,获得积分10
9秒前
子寒完成签到,获得积分10
9秒前
cxzhao完成签到,获得积分10
10秒前
10秒前
慕青应助柑橘采纳,获得10
11秒前
YANG发布了新的文献求助10
11秒前
12秒前
12秒前
缥缈傥发布了新的文献求助10
12秒前
12秒前
兴奋大船完成签到,获得积分10
13秒前
13秒前
Skuld应助无敌暴龙战神采纳,获得10
14秒前
奶俊啵啵完成签到 ,获得积分10
14秒前
why完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567