Determination of coagulant dosages for process control using online UV-vis spectra of raw water

剂量 化学 原水 水处理 过程(计算) 原始数据 制浆造纸工业 工艺工程 环境科学 统计 计算机科学 数学 环境工程 药理学 工程类 医学 操作系统
作者
Zhining Shi,Christopher W.K. Chow,Rolando Fabris,Jixue Liu,Emma Sawade,Bo Jin
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:45: 102526-102526 被引量:20
标识
DOI:10.1016/j.jwpe.2021.102526
摘要

Traditionally, coagulant doses are determined by the operators for the coagulation process at water treatment plants which is a multi-factor approach based on raw and treated water quality and in some situations relies heavily on their decisions. It can be challenging to determine appropriate coagulant doses proactively for tight coagulation control with the traditional method. Therefore, this study looked for alternative approaches for coagulation control and maybe the first to build coagulant dose determination models using only online raw water quality data (UV–Vis spectra) combined with chemometrics to determine coagulant doses for a drinking water treatment plant (WTP). Online UV–Vis spectral data at the raw water intake and alum dose data from a drinking WTP were used for building coagulant dose determination models. Three modelling techniques, including multiple linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs), were applied in this work. The results show that MLR and PLS models had almost identical performances with small root mean square errors (RMSE) and high correlation coefficients (R 2 ). Both MLR and PLS had slightly better performance than the ANNs for alum dose predictions. This study shows that the combination of online UV–Vis spectra and a chemometric method (MLR or PLS) was able to mimic operators' decisions in the determination of coagulant doses with a pH target of 6 to achieve a target DOC level of less than 5 mg/L for treated water quality. • Raw water UV–Vis spectra can mimic operator decision to determine coagulant dose. • MLR and PLS can extract chemical signatures from spectra for coagulation control. • Coagulant doses can be predicted using only raw water quality data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koi发布了新的文献求助10
刚刚
浦肯野应助湖月照我影采纳,获得30
刚刚
刚刚
陈博士完成签到,获得积分10
1秒前
Citrus完成签到,获得积分10
2秒前
费老三发布了新的文献求助30
2秒前
华仔应助chenjyuu采纳,获得10
2秒前
2秒前
最最最发布了新的文献求助10
2秒前
2秒前
Tuesday完成签到 ,获得积分10
3秒前
3秒前
4秒前
阿毛发布了新的文献求助10
5秒前
6秒前
情怀应助灵巧荆采纳,获得10
6秒前
Ll发布了新的文献求助10
6秒前
Peter发布了新的文献求助30
7秒前
7秒前
8秒前
科研韭菜发布了新的文献求助10
8秒前
科研通AI5应助爱学习采纳,获得10
8秒前
科研通AI5应助跳跃的太阳采纳,获得10
8秒前
苏尔琳诺完成签到,获得积分10
8秒前
科研通AI5应助a1oft采纳,获得10
9秒前
9秒前
关关过完成签到,获得积分10
9秒前
呢不辣完成签到,获得积分10
9秒前
9秒前
shi hui应助陈博士采纳,获得10
9秒前
9秒前
糖糖关注了科研通微信公众号
10秒前
10秒前
小恶于完成签到 ,获得积分10
10秒前
科研通AI2S应助落晨采纳,获得10
11秒前
11秒前
12秒前
半颗橙子发布了新的文献求助10
12秒前
小可爱完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762