A novel time–frequency Transformer based on self–attention mechanism and its application in fault diagnosis of rolling bearings

变压器 计算机科学 编码器 振动 特征学习 人工智能 电子工程 工程类 电压 电气工程 声学 操作系统 物理
作者
Yifei Ding,Minping Jia,Qiuhua Miao,Yudong Cao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:168: 108616-108616 被引量:411
标识
DOI:10.1016/j.ymssp.2021.108616
摘要

The scope of data-driven fault diagnosis models is greatly extended through deep learning (DL). However, the classical convolution and recurrent structure have their defects in computational efficiency and feature representation, while the latest Transformer architecture based on attention mechanism has not yet been applied in this field. To solve these problems, we propose a novel time-frequency Transformer (TFT) model inspired by the massive success of vanilla Transformer in sequence processing. Specially, we design a fresh tokenizer and encoder module to extract effective abstractions from the time-frequency representation (TFR) of vibration signals. On this basis, a new end-to-end fault diagnosis framework based on time-frequency Transformer is presented in this paper. Through the case studies on bearing experimental datasets, we construct the optimal Transformer structure and verify its fault diagnosis performance. The superiority of the proposed method is demonstrated in comparison with the benchmark models and other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
icon完成签到,获得积分10
3秒前
4秒前
小郭发布了新的文献求助10
5秒前
斯文败类应助Verity采纳,获得50
6秒前
zfh发布了新的文献求助10
6秒前
LX有理想关注了科研通微信公众号
6秒前
8秒前
迷路绮南完成签到 ,获得积分10
9秒前
整齐便当发布了新的文献求助10
10秒前
脑洞疼应助shouz采纳,获得10
10秒前
风趣翠霜完成签到,获得积分10
11秒前
11秒前
JamesPei应助若花若草采纳,获得10
12秒前
小猴子应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
niNe3YUE应助科研通管家采纳,获得10
13秒前
无极微光应助科研通管家采纳,获得20
13秒前
情怀应助科研通管家采纳,获得30
13秒前
灰灰完成签到,获得积分10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得30
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
niNe3YUE应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900