电催化剂
材料科学
分解水
析氧
钴
镍
纳米片
氢氧化钴
异质结
可逆氢电极
密度泛函理论
无机化学
化学工程
电极
电化学
催化作用
电解水
纳米技术
化学
电解
光催化
光电子学
物理化学
计算化学
工作电极
冶金
工程类
电解质
生物化学
作者
Tingting Liang,Syama Lenus,Yaoda Liu,Ya Chen,Thangavel Sakthivel,Fuyi Chen,Fei Ma,Zhengfei Dai
出处
期刊:Energy & environmental materials
日期:2021-12-09
卷期号:6 (2)
被引量:31
摘要
The catalyst innovation that aims at noble‐metal‐free substitutes is one key aspect for future sustainable hydrogen energy deployment. In this paper, a nickel cobalt sulfoselenide/black phosphorus heterostructure (NiCoSe|S/BP) was fabricated to realize the highly active and durable water electrolysis through interface and valence dual‐engineering. The NiCoSe|S/BP nanostructure was constructed by in‐situ growing NiCo hydroxide nanosheet arrays on few‐layer BP and subsequently one‐step sulfoselenization by SeS 2 . Besides the conductive merit of BP substrate, holes in p‐type BP are capable of oxidizing the Co 2+ to high‐valence and electron‐accepting Co 3+ , benefiting the oxygen evolution reaction (OER). Meanwhile, Ni 3+ /Ni 2+ ratio in the heterostructure is reduced to maintain the electrical neutrality, which corresponds to the increased electron‐donating character for boosting hydrogen evolution reaction (HER). As for HER and OER, the heterostructured NiCoSe|S/BP electrocatalyst exhibits small overpotentials of 172 and 285 mV at 10 mA cm −2 ( η 10 ) in alkaline media, respectively. And overall water splitting has been achieved at a low cell potential of 1.67 V at η 10 with high stability. Molecular sensing and density functional theory (DFT) calculations are further proposed for understanding the rate‐determine steps and enhanced catalytic mechanism. The investigation presents a deep‐seated perception for the electrocatalytic performance enhancement of BP‐based heterostructure.
科研通智能强力驱动
Strongly Powered by AbleSci AI