已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-task deep learning network to predict future macrovascular invasion in hepatocellular carcinoma

医学 逻辑回归 危险系数 肝细胞癌 置信区间 内科学 机器学习 曲线下面积 人工智能 放射科 肿瘤科 计算机科学
作者
Sirui Fu,Haoran Lai,Qiyang Li,Yao Liu,Jiawei Zhang,Jianwen Huang,Xiumei Chen,Chongyang Duan,Xiaoqun Li,Tao Wang,Xiaofeng He,Jianfeng Yan,Ligong Lu,Meiyan Huang
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:42: 101201-101201 被引量:23
标识
DOI:10.1016/j.eclinm.2021.101201
摘要

Models predicting future macrovascular invasion in hepatocellular carcinoma are constructed to assist timely interventions.A total of 366 HCC cases were retrospectively collected from five Chinese hospitals between April 2007 and November 2016: the training dataset comprised 281 patients from four hospitals; the external validation dataset comprised 85 patients from another hospital. Multi-task deep learning network-based models were constructed to predict future macrovascular invasion. The discrimination, calibration, and decision curves were compared to identify the best model. We compared the time to macrovascular invasion and overall survival using the best model and related image heterogeneity scores (H-score). Then, we determined the need for a segmentation subnet or the replacement deep learning algorithm by logistic regression in screening clinical/radiological factors. Finally, an applet was constructed for future application.The best model combined clinical/radiological factors and radiomic features. It achieved best discrimination (areas under the curve: 0·877 in the training dataset and 0·836 in the validation dataset), calibration, and decision curve. Its performance was not affected by the treatments and disease stages. The subgroups had statistical significance for time to macrovascular invasion (training: hazard ratio [HR] = 0·073, 95% confidence interval [CI]: 0·032-0·167, p < 0·001 and validation: HR = 0·090, 95%CI: 0·022-0·366, p < 0·001) and overall survival (training: HR = 0·344, 95%CI: 0·246-0·547, p < 0·001 and validation: HR = 0·489, 95%CI: 0·279 - 0·859, p = 0·003). Similar results were achieved when the patients were subdivided by the H-score. The subnet for segmentation and end-to-end deep learning algorithms improved the performance of the model.Our multi-task deep learning network-based model successfully predicted future macrovascular invasion. In high-risk populations, besides the current first-line treatments, more therapies may be explored for macrovascular invasion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
登山人完成签到 ,获得积分10
1秒前
安静如音完成签到 ,获得积分10
2秒前
沉夏谷发布了新的文献求助10
3秒前
4秒前
慕青应助保持微笑采纳,获得10
5秒前
大个应助shanshan采纳,获得10
6秒前
余凉完成签到,获得积分10
8秒前
9秒前
呃呃呃发布了新的文献求助10
10秒前
13秒前
纸砚完成签到,获得积分10
13秒前
16秒前
16秒前
Odile发布了新的文献求助30
17秒前
Shadow完成签到 ,获得积分10
17秒前
18秒前
今后应助ztr采纳,获得10
19秒前
19秒前
Crrr发布了新的文献求助10
19秒前
眯眯眼的谷冬完成签到 ,获得积分10
21秒前
保持微笑发布了新的文献求助10
22秒前
Blessing33发布了新的文献求助10
24秒前
科研通AI5应助Crrr采纳,获得10
25秒前
保持微笑完成签到,获得积分10
27秒前
英俊的铭应助许许采纳,获得30
27秒前
李李李子完成签到 ,获得积分10
29秒前
土豪的紫荷完成签到 ,获得积分10
30秒前
Blessing33完成签到,获得积分10
30秒前
冰子完成签到 ,获得积分10
31秒前
欣m完成签到 ,获得积分10
31秒前
读书完成签到,获得积分10
33秒前
penguin完成签到,获得积分10
34秒前
ya完成签到,获得积分10
37秒前
阿衍完成签到 ,获得积分10
38秒前
lwj完成签到,获得积分10
38秒前
暖暖完成签到 ,获得积分10
39秒前
1226发布了新的文献求助10
42秒前
44秒前
44秒前
大写的LV关注了科研通微信公众号
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655484
求助须知:如何正确求助?哪些是违规求助? 3218442
关于积分的说明 9724113
捐赠科研通 2926827
什么是DOI,文献DOI怎么找? 1602893
邀请新用户注册赠送积分活动 755854
科研通“疑难数据库(出版商)”最低求助积分说明 733533