纤维化
肾
化学
转化生长因子
BK通道
内分泌学
受体
内科学
纤维连接蛋白
信号转导
细胞生物学
癌症研究
生物
钾通道
医学
细胞
生物化学
作者
Yinhang Wang,Mengling Wang,Fengling Ning,Dadui Ren,Jie Tao,Weiyi Xie,Douglas C. Eaton,Gengru Jiang,Alton B. Farris,Hong Xin,Hui Cai,Xuemei Zhang
标识
DOI:10.1016/j.kint.2021.11.033
摘要
Kidney fibrosis is a common characteristic of chronic kidney disease and while the large conductance voltage and calcium-activated potassium channel (BK) is widely expressed in kidneys, its role in kidney fibrosis is unknown. To evaluate this, we found that BK protein expression was decreased in the fibrotic kidneys. Accompanying this was increased fibrotic marker protein expression of fibronectin, vimentin and α-smooth muscle actin and increased mRNA expressions of fibronectin, α-smooth muscle actin, collagen III and collagen I. These changes occurred in the unilateral ureteral obstruction and folic acid models of fibrosis and were more pronounced in BK knockout than in wild-type mice. Activation of BK activity by chemical NS1619 or BMS191011 channel openers attenuated kidney fibrosis in these two models while protecting kidney function in wild-type mice. BK deficiency up-regulated transforming growth factor-β (TGF-β)/transcription factor Smad2/3 signaling in the fibrotic kidney, whereas activation of BK activity inhibited this signaling pathway both in vivo and in vitro. BK channel activation increased the degradation of TGF-β receptors induced by TGF-β1 in vivo and in vitro. Furthermore, in cell lines HK-2, NRK49, and NRK-52E, BK channel activation by NS1619 led to increased caveolae formation and facilitated localization of TGF-β receptors in the microdomains of lipid rafts. Thus, our data demonstrated that BK activation has an anti-fibrotic effect on kidney fibrosis by inhibiting the TGF-β signaling pathway through accelerating TGF-β receptor degradation via the caveolae route. Hence, our study provides innovative insight into BK as a potential therapeutic target for the treatment of kidney fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI