Fractional stochastic configuration networks-based nonstationary time series prediction and confidence interval estimation

系列(地层学) 计算机科学 时间序列 置信区间 区间(图论) 估计 人工智能 算法 统计 机器学习 数学 生物 组合数学 古生物学 经济 管理
作者
Jing Wang,Wang Jing,YangQuan Chen,Yan Zhu Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:192: 116357-116357 被引量:2
标识
DOI:10.1016/j.eswa.2021.116357
摘要

Time series prediction is an important topic in the field of data analytics for real industrial production. However, the time series from real system usually has strong nonstationarity, which affects the generalization ability of the prediction model. An improved forecasting technique, named as fractional stochastic configuration networks (FSCN), is proposed for the prediction of nonstationary time series. FSCN is built on the basis of traditional stochastic configuration network by introducing fractional differential operator. The fractional differential technique avoids the challenge of infinite variance caused by modeling nonstationary series and the over-difference problem caused by traditional integer order difference. First, several data analysis methods are introduced to find the tendency, periodicity and probability density distribution characteristics hidden in the raw industrial data. Hurst exponent is calculated to determine the order of fractional difference to eliminate the nonstationarity of the raw data. Then FSCN network is constructed to model and forecast the sequential data. An explicit prediction uncertainty is derived to provide the confidence interval for the FSCN prediction. The proposed method is tested on a nonstationary time series benchmark dataset and a real cooling system. The experiment result demonstrates that it has a good potential prediction performance compared with several traditional prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ruirui完成签到,获得积分10
1秒前
Tal完成签到,获得积分10
1秒前
1秒前
2秒前
年轻的白梦完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
老白完成签到,获得积分10
2秒前
4秒前
impala完成签到,获得积分10
4秒前
Matrix完成签到,获得积分10
4秒前
Ruirui发布了新的文献求助30
5秒前
营养小杨应助eyes采纳,获得10
5秒前
开放的初柔完成签到,获得积分10
5秒前
科研通AI5应助季夏采纳,获得10
5秒前
5秒前
悲伤西米露应助yide采纳,获得20
5秒前
开心的幼珊完成签到 ,获得积分10
6秒前
6秒前
6秒前
江小苔完成签到,获得积分20
6秒前
Huang发布了新的文献求助10
6秒前
weiwei发布了新的文献求助20
8秒前
团团子发布了新的文献求助30
8秒前
austing完成签到,获得积分10
8秒前
hobowei完成签到 ,获得积分10
8秒前
18621058639完成签到,获得积分10
9秒前
来一起做朋友吧完成签到,获得积分20
9秒前
Dexter完成签到,获得积分10
9秒前
明小丽完成签到,获得积分10
9秒前
loey完成签到,获得积分10
9秒前
9秒前
呆鹅喵喵完成签到,获得积分10
9秒前
披萨778完成签到,获得积分10
10秒前
希望天下0贩的0应助honeyoko采纳,获得10
10秒前
WNL完成签到,获得积分10
11秒前
山乞凡完成签到 ,获得积分10
11秒前
11秒前
英俊的铭应助晨晨额呵呵采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Modern nutrition in health and disease 10th ed 1000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550760
求助须知:如何正确求助?哪些是违规求助? 3127089
关于积分的说明 9372085
捐赠科研通 2826248
什么是DOI,文献DOI怎么找? 1553613
邀请新用户注册赠送积分活动 725007
科研通“疑难数据库(出版商)”最低求助积分说明 714494