生物累积
镉
去壳
栽培
水稻
化学
稻草
农学
糙米
土壤水分
土壤污染
园艺
环境化学
生物
植物
食品科学
有机化学
生态学
作者
Abu Bakkar Siddique,Mohammad Mahmudur Rahman,Md. Rafiqul Islam,Ravi Naidu
标识
DOI:10.1016/j.scitotenv.2021.152296
摘要
Cadmium (Cd) is a widespread environmental contaminant, and its increasing concentrations in rice poses significant risks to human health. Globally, rice is a staple food for millions of people, and consequently, effective strategies to reduce Cd accumulation in rice are needed. This study investigates the effect of soil pH (Soil 1: 4.6; Soil 2: 6.6) and iron (Fe) application (at 0, 1.0 and 2.0 g/kg) on Fe plaque formation, Cd sequestration in Fe plaques and Cd bioaccumulation in different parts of the rice plant for three different Cd-graded paddy soils (0, 1.0 and 3.0 mg/kg, respectively) using two Australian rice cultivars under glasshouse conditions. Results show that grain and straw yield declined as Cd toxicity increased, and the toxic effects of Cd were lower in the Quest cultivar than in the Langi cultivar. With applications of Cd at 1.0 mg/kg and 3.0 mg/kg, Cd concentrations in rice grown in Soil 1 were 1.09 mg/kg and 1.37 mg/kg, respectively, while those in rice grown in Soil 2 were 0.38 mg/kg and 0.52 mg/kg, respectively. Soil pH significantly affected the bioaccumulation of Cd in different parts of the rice plant. At both levels of Cd application, Cd concentration was highest in the root, followed by the stem, leaf, husk and grain. Cd was more concentrated in Fe plaques formed by the application of Fe than in rice plant tissues. The Quest cultivar had a higher ability to produce Fe plaques and a 1.3- and 1.4-times higher Cd concentration compared with the Langi cultivar in Soils 1 and 2, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI