Modeling parasitic absorption in silicon solar cells with a near-surface absorption parameter

吸收(声学) 材料科学 太阳能电池 光电子学 自由载流子吸收 兴奋剂 光学 晶体硅 复合材料 物理
作者
Andreas Fell,Johannes Greulich,Frank Feldmann,Christoph Messmer,Jonas Schön,Martin Bivour,Martin C. Schubert,Stefan W. Glunz
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:236: 111534-111534 被引量:16
标识
DOI:10.1016/j.solmat.2021.111534
摘要

One drawback of passivating contacts in crystalline silicon solar cells is the current loss due to parasitic absorption within the involved material layers. When employed on an illuminated side of the cell, the full spectrum of the incident light will be partly absorbed before reaching the silicon bulk. Additionally, near-infrared (NIR) absorption can substantially reduce the cell's NIR spectral response (SR) also when employed on the non-illuminated side. As those losses are hard to measure directly, optical modeling is crucial for their quantification. This paper presents an extension to an analytical light-trapping model to account for parasitic absorption in the near-surface region via a new parameter Appp (absorbed fraction per perpendicular pass). We test the model by analyzing i) reflectance measurements on samples with varying doping profiles, ii) SR measurements on TOPCon solar cells with varying back-side poly-silicon layers, and iii) SR measurements of a bifacial silicon heterojunction cell. We show that the model can well be calibrated by fitting a single value for Appp to reflectance measurements. This enables a quantification of the parasitic absorption loss without requiring knowledge of all layer's optical properties. The model also is able to predict parasitic absorption in TOPCon cells when knowing the thickness and doping density of the poly-Si layer. Having proven the usefulness of Appp to represent parasitic absorption as a single-valued quantity, we suggest Appp as a third figure of merit for the quality of a passivating contact, next to the recombination parameter J0c and the contact resistivity ρc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
lu应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_MLJldZ发布了新的文献求助10
1秒前
wys完成签到 ,获得积分10
2秒前
3秒前
michaelvin完成签到,获得积分10
3秒前
学术大白完成签到 ,获得积分10
6秒前
6秒前
SYT完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
魏伯安发布了新的文献求助10
11秒前
11秒前
zhouleiwang完成签到,获得积分10
12秒前
李爱国应助aiming采纳,获得10
13秒前
无奈傲菡完成签到,获得积分10
14秒前
TT发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
sun发布了新的文献求助10
16秒前
荣荣完成签到,获得积分10
16秒前
17秒前
小安完成签到,获得积分10
18秒前
Spencer完成签到 ,获得积分10
18秒前
PengHu完成签到,获得积分10
19秒前
19秒前
21秒前
23秒前
23秒前
23秒前
ywang发布了新的文献求助10
24秒前
失眠虔纹完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849