μDFL: A Secure Microchained Decentralized Federated Learning Fabric atop IoT Networks

计算机科学 可扩展性 块链 分布式计算 块(置换群论) 协议(科学) 联合学习 计算机网络 Byzantine容错 计算机安全 容错 数据库 医学 病理 替代医学 数学 几何学
作者
Ronghua Xu,Yu Chen
标识
DOI:10.36227/techrxiv.17046365.v1
摘要

<div>Federated Learning (FL) has been recognized as a privacy-preserving machine learning (ML) technology that enables collaborative training and learning of a global ML model based on the aggregation of distributed local model updates. However, security and privacy guarantees could be compromised due to malicious participants and the centralized aggregation manner. Possessing attractive features like decentralization, immutability and auditability, Blockchain is promising to enable a tamper-proof and trust-free framework to enhance performance and security in IoT based FL systems. However, directly integrating blockchains into the large scale IoT-based FL scenarios still faces many limitations, such as high computation and storage demands, low transactions throughput, poor scalability and challenges in privacy preservation. This paper proposes uDFL, a novel hierarchical IoT network fabric for decentralized federated learning (DFL) atop of a lightweight blockchain called microchain. Following the hierarchical infrastructure of FL, participants in uDFL are fragmented into multiple small scale microchains. Each microchain network relies on a hybrid Proof of Credit (PoC) block generation and Voting-based Chain Finality (VCF) consensus protocol to ensure efficiency and privacy-preservation at the network of edge. Meanwhile, microchains are federated vie a high-level inter-chain network, which adopts an efficient Byzantine Fault Tolerance (BFT) consensus protocol to achieve scalability and security.</div><div>A proof-of-concept prototype is implemented, and the experimental results verify the feasibility of the proposed uDFL solution in cross-devices FL settings with efficiency, security and privacy guarantees.</div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guo发布了新的文献求助10
刚刚
刚刚
1秒前
领导范儿应助eri采纳,获得10
1秒前
zixian完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
3秒前
3秒前
dinglingling完成签到,获得积分20
3秒前
caitSith发布了新的文献求助10
3秒前
5秒前
Joshua完成签到,获得积分10
5秒前
pakkkho发布了新的文献求助10
6秒前
Gauss完成签到,获得积分0
6秒前
考研小白发布了新的文献求助10
6秒前
6秒前
沙糖桔完成签到,获得积分10
6秒前
无花果应助小申采纳,获得10
7秒前
76发布了新的文献求助10
7秒前
7秒前
羽毛发布了新的文献求助10
7秒前
Xide发布了新的文献求助10
8秒前
liangmao应助Chenbiao采纳,获得10
8秒前
领导范儿应助独特乘云采纳,获得10
11秒前
Justin完成签到,获得积分10
11秒前
隐形的若灵完成签到,获得积分10
11秒前
1410完成签到,获得积分10
11秒前
12秒前
开放的扬完成签到 ,获得积分10
12秒前
12秒前
封似狮完成签到,获得积分10
12秒前
14秒前
隐形曼青应助plants采纳,获得10
15秒前
我是老大应助余白薇采纳,获得10
15秒前
Pweni应助栗子的小母牛采纳,获得30
15秒前
坚强的紫菜完成签到,获得积分10
17秒前
17秒前
17秒前
蛙趣完成签到,获得积分10
18秒前
斯文墨镜完成签到,获得积分10
18秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186