Typhoon Risk Perception: A Case Study of Typhoon Lekima in China

台风 自然灾害 危害 人口 中国 地理 感知 自然灾害 环境资源管理 风险感知 环境科学 气象学 人口学 心理学 生态学 社会学 考古 神经科学 生物
作者
Jiting Tang,Saini Yang,Yimeng Liu,Kezhen Yao,Guofu Wang
出处
期刊:International Journal of Disaster Risk Science [Springer Nature]
卷期号:13 (2): 261-274 被引量:7
标识
DOI:10.1007/s13753-022-00405-6
摘要

Abstract The typhoon is one major threat to human societies and natural ecosystems, and its risk perception is crucial for contextualizing and managing disaster risks in different social settings. Social media data are a new data source for studying risk perception, because such data are timely, widely distributed, and sensitive to emergencies. However, few studies have focused on crowd sensitivity variation in social media data-based typhoon risk perception. Based on the regional disaster system theory, a framework of analysis for crowd risk perception was established to explore the feasibility of using social media data for typhoon risk perception analysis and crowd sensitivity variation. The goal was to quantitatively analyze the impact of hazard intensity and social and geographical environments on risk perception and its variation among population groups. Taking the Sina Weibo data during Typhoon Lekima of 2019 as an example, we found that: (1) Typhoon Lekima-related Weibo public attention changed in accordance with the evolution of the typhoon track and the number of Weibo posts shows a significantly positive correlation with disaster losses, while socioeconomic factors, including population, gross domestic product, and land area, are not explanatory factors of the spatial distribution of disaster-related Weibo posts; (2) Females, nonlocals with travel plans, and people living in areas with high hazard intensity, low elevation, or near waterbodies affected by Lekima paid more attention to the typhoon disaster; and (3) Descriptions of rainfall intensity by females are closer to the meteorological observation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ericzhouxx完成签到,获得积分10
刚刚
香蕉觅云应助ran采纳,获得10
2秒前
3秒前
skj你考六级完成签到,获得积分10
3秒前
zjhzslq完成签到,获得积分10
3秒前
天天快乐应助橘络采纳,获得10
4秒前
CipherSage应助orange9采纳,获得10
5秒前
酷酷友容关注了科研通微信公众号
5秒前
可靠小凝完成签到 ,获得积分10
7秒前
StuXuhao完成签到,获得积分10
8秒前
酷波er应助小木棉采纳,获得10
9秒前
10秒前
11秒前
科研通AI2S应助xinchi采纳,获得10
13秒前
13秒前
orange9发布了新的文献求助10
15秒前
15秒前
Xuemin发布了新的文献求助10
17秒前
Hello应助gejingshu采纳,获得10
18秒前
迪迦发布了新的文献求助30
18秒前
21秒前
21秒前
25秒前
合适的平安完成签到,获得积分10
27秒前
ket发布了新的文献求助10
27秒前
27秒前
港岛妹妹给港岛妹妹的求助进行了留言
28秒前
李健应助追梦采纳,获得10
28秒前
gejingshu完成签到,获得积分10
29秒前
hnl应助曾经小伙采纳,获得60
29秒前
酷波er应助曾经小伙采纳,获得10
29秒前
酷波er应助intangible采纳,获得10
29秒前
29秒前
30秒前
drsunofoph123发布了新的文献求助10
31秒前
Xuemin完成签到,获得积分10
31秒前
斯文败类应助刻苦问凝采纳,获得10
32秒前
gejingshu发布了新的文献求助10
32秒前
安静的绮琴完成签到,获得积分10
34秒前
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589