Constrained model predictive control: Stability and optimality

模型预测控制 最优控制 理论(学习稳定性) 控制理论(社会学) 序列(生物学) 地平线 非线性系统 计算机科学 控制(管理) 时间范围 数学 数学优化 人工智能 机器学习 遗传学 量子力学 生物 物理 几何学
作者
D.Q. Mayne,James B. Rawlings,Christopher V. Rao,P.O.M. Scokaert
出处
期刊:Automatica [Elsevier]
卷期号:36 (6): 789-814 被引量:8050
标识
DOI:10.1016/s0005-1098(99)00214-9
摘要

Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petro-chemical and related industries where satisfaction of constraints is particularly important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear and/or time-varying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill from an extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model predictive controllers that have been proposed in the literature. In some cases the finite horizon optimal control problem solved on-line is exactly equivalent to the same problem with an infinite horizon; in other cases it is equivalent to a modified infinite horizon optimal control problem. In both situations, known advantages of infinite horizon optimal control accrue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Lionel采纳,获得10
1秒前
Liangstar完成签到 ,获得积分10
2秒前
2秒前
3秒前
彭于晏应助KD采纳,获得10
5秒前
周一完成签到,获得积分10
6秒前
江梦松发布了新的文献求助10
6秒前
大胆代桃发布了新的文献求助10
7秒前
花雨落123完成签到,获得积分10
8秒前
8秒前
年轻的凤发布了新的文献求助30
10秒前
江梦松完成签到,获得积分10
14秒前
yeape完成签到,获得积分10
15秒前
15秒前
优雅毛豆发布了新的文献求助30
15秒前
15秒前
太陽应助含糊的文涛采纳,获得10
16秒前
秀丽的初柔完成签到 ,获得积分10
16秒前
16秒前
16秒前
zhangyx完成签到 ,获得积分10
18秒前
SAODEN发布了新的文献求助10
20秒前
自由可乐应助justin采纳,获得30
20秒前
新鲜事发布了新的文献求助10
21秒前
荔枝的油饼iKun完成签到,获得积分10
25秒前
27秒前
向春山发布了新的文献求助10
28秒前
29秒前
无花果应助lmz采纳,获得10
31秒前
上官若男应助软土豆丝采纳,获得10
31秒前
新鲜事完成签到,获得积分20
32秒前
34秒前
还没睡醒发布了新的文献求助10
34秒前
36秒前
星辰大海应助xianjingli采纳,获得30
36秒前
专一的访文完成签到,获得积分10
37秒前
666发布了新的文献求助10
38秒前
哈哈哈完成签到,获得积分10
38秒前
英俊的铭应助海鹏采纳,获得10
38秒前
yyy关注了科研通微信公众号
38秒前
高分求助中
The body in description of emotion: cross-linguistic studies 1000
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212561
求助须知:如何正确求助?哪些是违规求助? 2861483
关于积分的说明 8129071
捐赠科研通 2527442
什么是DOI,文献DOI怎么找? 1361163
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615761