实验性自身免疫性脑脊髓炎
髓鞘少突胶质细胞糖蛋白
dna疫苗
抗原
PLGA公司
接种疫苗
免疫学
免疫系统
多发性硬化
佐剂
髓鞘碱性蛋白
髓鞘
医学
生物
免疫
体外
内科学
生物化学
中枢神经系统
作者
Giuseppe Cappellano,Abiy Demeke Woldetsadik,Elisabetta Orilieri,Yogesh Shivakumar,Manuela Rizzi,Fabio Carniato,Casimiro Luca Gigliotti,Elena Boggio,Nausicaa Clemente,Cristoforo Comi,Chiara Dianzani,Renzo Boldorini,Annalisa Chiocchetti,Filippo Renò,Umberto Dianzani
出处
期刊:Vaccine
[Elsevier]
日期:2014-08-20
卷期号:32 (43): 5681-5689
被引量:126
标识
DOI:10.1016/j.vaccine.2014.08.016
摘要
“Inverse vaccination” refers to antigen-specific tolerogenic immunization treatments that are capable of inhibiting autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), initial trials using purified myelin antigens required repeated injections because of the rapid clearance of the antigens. This problem has been overcome by DNA-based vaccines encoding for myelin autoantigens alone or in combination with “adjuvant” molecules, such as interleukin (IL)-4 or IL-10, that support regulatory immune responses. Phase I and II clinical trials with myelin basic protein (MBP)-based DNA vaccines showed positive results in reducing magnetic resonance imaging (MRI)-measured lesions and inducing tolerance to myelin antigens in subsets of MS patients. However, DNA vaccination has potential risks that limit its use in humans. An alternative approach could be the use of protein-based inverse vaccines loaded in polymeric biodegradable lactic-glycolic acid (PLGA) nano/microparticles (NP) to obtain the sustained release of antigens and regulatory adjuvants. The aim of this work was to test the effectiveness of PLGA-NP loaded with the myelin oligodendrocyte glycoprotein (MOG)35–55 autoantigen and recombinant (r) IL-10 to inverse vaccinate mice with EAE. In vitro experiments showed that upon encapsulation in PLGA-NP, both MOG35-55 and rIL-10 were released for several weeks into the supernatant. PLGA-NP did not display cytotoxic or proinflammatory activity and were partially endocytosed by phagocytes. In vivo experiments showed that subcutaneous prophylactic and therapeutic inverse vaccination with PLGA-NP loaded with MOG35-55 and rIL-10 significantly ameliorated the course of EAE induced with MOG35-55 in C57BL/6 mice. Moreover, they decreased the histopathologic lesions in the central nervous tissue and the secretion of IL-17 and interferon (IFN)-γ induced by MOG35-55 in splenic T cells in vitro. These data suggest that subcutaneous PLGA-NP-based inverse vaccination may be an effective tool to treat autoimmune diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI