清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation

电动汽车 健康状况 航程(航空) 荷电状态 汽车工程 电压 锂离子电池 计算机科学 可靠性工程 工程类 电池(电) 电气工程 功率(物理) 物理 量子力学 航空航天工程
作者
Verena Klass,Mårten Behm,Göran Lindbergh
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:270: 262-272 被引量:333
标识
DOI:10.1016/j.jpowsour.2014.07.116
摘要

Capacity and resistance are state-of-health (SOH) indicators that are essential to monitor during the application of batteries on board electric vehicles. For state-of-health determination in laboratory environment, standard battery performance tests are established and well-functioning. Since standard performance tests are not available on-board a vehicle, we are developing a method where those standard tests are applied virtually to a support vector machine-based battery model. This data-driven model is solely based on variables available during ordinary electric vehicle (EV) operation such as battery current, voltage and temperature. This article contributes with a thorough experimental validation of this method, as well as the introduction of new features – capacity estimation and temperature dependence. Typical EV battery usage data is generated and exposed to the suggested method in order to estimate capacity and resistance. These estimations are compared to direct measurements of the SOH indicators with standard tests. The obtained estimations of capacities and instantaneous resistances demonstrate good accuracy over a temperature and state-of-charge range typical for EV operating conditions and allow thus for online detection of battery degradation. The proposed method is also found to be suitable for on-board application in respect of processing power and memory restrictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
XD824发布了新的文献求助10
7秒前
优雅的WAN完成签到 ,获得积分10
19秒前
20秒前
热情的橙汁完成签到,获得积分10
24秒前
26秒前
个性的紫菜应助hugeyoung采纳,获得30
26秒前
靓丽宛亦完成签到 ,获得积分10
31秒前
hugeyoung完成签到,获得积分10
35秒前
37秒前
萝卜猪完成签到,获得积分10
41秒前
45秒前
46秒前
Wen完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
LMW应助lee采纳,获得10
1分钟前
XD824发布了新的文献求助10
1分钟前
sfjww发布了新的文献求助30
1分钟前
中恐完成签到,获得积分0
1分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助如沐春风采纳,获得10
2分钟前
ffff完成签到,获得积分10
2分钟前
2分钟前
2分钟前
如沐春风完成签到,获得积分10
2分钟前
2分钟前
如沐春风发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
LMW应助lee采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098