A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation

电动汽车 健康状况 航程(航空) 荷电状态 汽车工程 电压 锂离子电池 计算机科学 可靠性工程 工程类 电池(电) 电气工程 功率(物理) 物理 航空航天工程 量子力学
作者
Verena Klass,Mårten Behm,Göran Lindbergh
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:270: 262-272 被引量:333
标识
DOI:10.1016/j.jpowsour.2014.07.116
摘要

Capacity and resistance are state-of-health (SOH) indicators that are essential to monitor during the application of batteries on board electric vehicles. For state-of-health determination in laboratory environment, standard battery performance tests are established and well-functioning. Since standard performance tests are not available on-board a vehicle, we are developing a method where those standard tests are applied virtually to a support vector machine-based battery model. This data-driven model is solely based on variables available during ordinary electric vehicle (EV) operation such as battery current, voltage and temperature. This article contributes with a thorough experimental validation of this method, as well as the introduction of new features – capacity estimation and temperature dependence. Typical EV battery usage data is generated and exposed to the suggested method in order to estimate capacity and resistance. These estimations are compared to direct measurements of the SOH indicators with standard tests. The obtained estimations of capacities and instantaneous resistances demonstrate good accuracy over a temperature and state-of-charge range typical for EV operating conditions and allow thus for online detection of battery degradation. The proposed method is also found to be suitable for on-board application in respect of processing power and memory restrictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miao完成签到,获得积分10
1秒前
天天快乐应助biochen采纳,获得10
3秒前
3秒前
4秒前
4秒前
英姑应助Galato采纳,获得10
4秒前
ccc完成签到,获得积分10
6秒前
dimples完成签到 ,获得积分10
7秒前
晋启轩完成签到 ,获得积分10
7秒前
7秒前
miao发布了新的文献求助10
8秒前
11秒前
12秒前
无花果应助qqqq_8采纳,获得10
12秒前
bosco完成签到,获得积分10
14秒前
urologistwzy完成签到,获得积分10
15秒前
跳跃的如豹关注了科研通微信公众号
15秒前
邓111111发布了新的文献求助10
16秒前
17秒前
小马甲应助无呜呜采纳,获得10
18秒前
耳机单蹦应助王蕊采纳,获得20
18秒前
punchline2025发布了新的文献求助10
20秒前
20秒前
hyx发布了新的文献求助20
20秒前
20秒前
21秒前
一念永恒完成签到 ,获得积分10
21秒前
21秒前
冯小路完成签到 ,获得积分10
22秒前
小白完成签到,获得积分10
23秒前
23秒前
23秒前
汐风应助搞怪的紫雪采纳,获得10
24秒前
24秒前
涵泽发布了新的文献求助10
26秒前
yarkye完成签到,获得积分10
26秒前
科研通AI6应助llflame采纳,获得10
26秒前
Sepvvvvirtue发布了新的文献求助10
26秒前
爆米花应助归于晏采纳,获得10
27秒前
qqqq_8发布了新的文献求助10
27秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379616
求助须知:如何正确求助?哪些是违规求助? 4503889
关于积分的说明 14016933
捐赠科研通 4412719
什么是DOI,文献DOI怎么找? 2423913
邀请新用户注册赠送积分活动 1416795
关于科研通互助平台的介绍 1394372