内分泌学
内科学
间充质干细胞
骨重建
骨形态发生蛋白
生物
化学
细胞生物学
医学
生物化学
基因
作者
Zhijie Dai,Sookja Kim Chung,Dengshun Miao,Kam Shing Lau,Alfred W H Chan,Annie W.C. Kung
摘要
myo-Inositol (MI) plays an essential role in several important processes of cell physiology, is involved in the neural system, and provides an effective treatment for some psychiatric disorders. Its role in osteogenesis and bone formation nonetheless is unclear. Sodium/MI cotransporter 1 (SMIT1, the major cotransporter of MI) knockout (SMIT1(-/-)) mice with markedly reduced tissue MI levels were used to characterize the essential roles of MI and SMIT1 in osteogenesis. SMIT1(-/-) embryos had a dramatic delay in prenatal mineralization and died soon after birth owing to respiratory failure, but this could be rescued by maternal MI supplementation. The rescued SMIT1(-/-) mice had shorter limbs, decreased bone density, and abnormal bone architecture in adulthood. Deletion of SMIT1 resulted in retarded postnatal osteoblastic differentiation and bone formation in vivo and in vitro. Continuous MI supplementation partially restored the abnormal bone phenotypes in adult SMIT1(-/-) mice and strengthened bone structure in SMIT1(+/+) mice. Although MI content was much lower in SMIT1(-/-) mesenchymal cells (MSCs), the I(1,4,5)P(3) signaling pathway was excluded as the means by which SMIT1 and MI affected osteogenesis. PCR expression array revealed Fgf4, leptin, Sele, Selp, and Nos2 as novel target genes of SMIT1 and MI. SMIT1 was constitutively expressed in multipotential C3H10T1/2 and preosteoblastic MC3T3-E1 cells and could be upregulated during bone morphogenetic protein 2 (BMP-2)-induced osteogenesis. Collectively, this study demonstrated that deficiency in SMIT1 and MI has a detrimental impact on prenatal skeletal development and postnatal bone remodeling and confirmed their essential roles in osteogenesis, bone formation, and bone mineral density (BMD) determination.
科研通智能强力驱动
Strongly Powered by AbleSci AI