中间性中心性
生态网络
中心性
生物扩散
代表性启发
地理
环境资源管理
生态学
景观连通性
网络科学
景观生态学
计算机科学
网络规划与设计
复杂网络
生态系统
栖息地
环境科学
人口
社会心理学
生物
心理学
组合数学
万维网
社会学
人口学
数学
计算机网络
作者
Andrea De Montis,Simone Caschili,M. Mulas,Giuseppe Modica,Amedeo Ganciu,Antonietta Bardi,Antonio Ledda,Leonarda Dessena,Luigi Laudari,Carmelo Riccardo Fichera
标识
DOI:10.1016/j.landusepol.2015.10.004
摘要
Urban–rural landscape planning research is nowadays focusing on strategies and tools that support practitioners to design local areas where human and natural pressures interfere. A prominent framework is provided by ecological network studies, whose design regards the combination of a set of green areas and patches (nodes) interconnected through environmental corridors (edges). Ecological networks are key for biodiversity protection and enhancement, as they are able to counteract fragmentation, and to create and strengthen relations and exchanges among otherwise isolated elements. Biodiversity evolution, indeed, depends on the quantity and quality of spatial cohesion of natural areas. In this paper, we propose a methodological framework based on network modelling for the study and modelling of ecological networks. We use network properties and centrality measures (degree, clustering coefficient, and betweenness centrality) and take into account the intensity of the dispersal capacity by introducing the corresponding weighted centrality measures. We simulate the dynamics of ecological networks by monitoring the residual dispersal capacity and the number of connected components from three perspectives: random attacks, deterministic attacks according to decreasing betweenness centrality and influence of master plans. We demonstrate that spatial network analysis is useful to monitor the performance of ecological networks and support decision-making, management, and planning. The proposed methodology is applied to the case study of the peri-urban and urban areas of the town of Nuoro (Italy). Patches (nodes) have been selected among the ecosystems with target vegetal species Holm oak and cultivated and wild Olive while the connecting corridors (links) enable for seed dispersal.
科研通智能强力驱动
Strongly Powered by AbleSci AI