Machine learning for real-time prediction of complications in critical care: a retrospective study

医学 回顾性队列研究 梅德林 重症监护医学 急诊医学 内科学 政治学 法学
作者
Alexander Meyer,Dina Zverinski,Boris Pfahringer,Jörg Kempfert,Titus Küehne,Simon H. Sündermann,Christof Stamm,Thomas Hofmann,Volkmar Falk,Carsten Eickhoff
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:6 (12): 905-914 被引量:289
标识
DOI:10.1016/s2213-2600(18)30300-x
摘要

Background The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. Methods We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. Findings Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23–0·35) for bleeding, by 0·24 (0·19–0·29) for mortality, and by 0·24 (0·13–0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03–0·15; p=0·0026) for bleeding, of 0·18 (0·07–0·29; p=0·0013) for mortality, and of 0·25 (0·18–0·32; p<0·0001) for renal failure. Interpretation The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. Funding No specific funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率翠绿完成签到,获得积分10
2秒前
Sea完成签到,获得积分10
2秒前
GLZ6984完成签到,获得积分10
5秒前
5秒前
8秒前
皮皮完成签到 ,获得积分10
9秒前
神说应助ceeray23采纳,获得20
9秒前
Suzzne完成签到,获得积分10
9秒前
10秒前
绿波电龙完成签到,获得积分10
10秒前
完美凝海完成签到,获得积分10
10秒前
冰水完成签到,获得积分10
12秒前
可靠之玉完成签到,获得积分10
12秒前
小不完成签到 ,获得积分10
12秒前
13秒前
13秒前
cccc完成签到,获得积分10
13秒前
欢呼阁完成签到,获得积分10
14秒前
沈归尘完成签到,获得积分10
15秒前
Yanki完成签到,获得积分10
16秒前
昵称完成签到,获得积分10
17秒前
小天竺1212完成签到,获得积分10
18秒前
111完成签到 ,获得积分10
18秒前
花开那年完成签到 ,获得积分10
18秒前
18秒前
Tacamily完成签到,获得积分10
19秒前
Khr1stINK完成签到,获得积分10
19秒前
徐归尘发布了新的文献求助10
20秒前
zjw完成签到,获得积分10
22秒前
恩赐解脱完成签到,获得积分10
22秒前
goo完成签到 ,获得积分10
24秒前
ani发布了新的文献求助10
24秒前
只道寻常完成签到,获得积分10
24秒前
YYY完成签到,获得积分10
25秒前
七田皿发布了新的文献求助10
27秒前
sunshine完成签到,获得积分10
27秒前
28秒前
yukang完成签到 ,获得积分10
29秒前
Xu完成签到 ,获得积分10
29秒前
Jasper应助专注的飞瑶采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742453
求助须知:如何正确求助?哪些是违规求助? 3284964
关于积分的说明 10042546
捐赠科研通 3001636
什么是DOI,文献DOI怎么找? 1647490
邀请新用户注册赠送积分活动 784234
科研通“疑难数据库(出版商)”最低求助积分说明 750676