Machine learning for real-time prediction of complications in critical care: a retrospective study

医学 回顾性队列研究 梅德林 重症监护医学 急诊医学 内科学 法学 政治学
作者
Alexander Meyer,Dina Zverinski,Boris Pfahringer,Jörg Kempfert,Titus Küehne,Simon H. Sündermann,Christof Stamm,Thomas Hofmann,Volkmar Falk,Carsten Eickhoff
出处
期刊:The Lancet Respiratory Medicine [Elsevier]
卷期号:6 (12): 905-914 被引量:289
标识
DOI:10.1016/s2213-2600(18)30300-x
摘要

Background The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. Methods We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. Findings Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23–0·35) for bleeding, by 0·24 (0·19–0·29) for mortality, and by 0·24 (0·13–0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03–0·15; p=0·0026) for bleeding, of 0·18 (0·07–0·29; p=0·0013) for mortality, and of 0·25 (0·18–0·32; p<0·0001) for renal failure. Interpretation The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. Funding No specific funding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱云发布了新的文献求助10
刚刚
杨佳宁发布了新的文献求助10
刚刚
十号发布了新的文献求助10
1秒前
落后的乌龟应助小太阳采纳,获得10
1秒前
1秒前
领导范儿应助shu采纳,获得10
1秒前
chemchen完成签到,获得积分10
1秒前
HZH完成签到,获得积分10
1秒前
圆圆901234发布了新的文献求助30
2秒前
3秒前
花粉过敏完成签到,获得积分10
4秒前
KXQ发布了新的文献求助10
4秒前
科研通AI2S应助敲敲采纳,获得10
4秒前
霜序完成签到,获得积分10
5秒前
水蔓菁完成签到,获得积分10
5秒前
momo完成签到 ,获得积分10
5秒前
5秒前
5秒前
还单身的老虎完成签到,获得积分10
5秒前
Mashiro完成签到,获得积分10
5秒前
无花果应助优雅的听兰采纳,获得10
6秒前
真实的南琴完成签到,获得积分10
7秒前
7秒前
勤奋白昼完成签到,获得积分20
7秒前
CodeCraft应助gan采纳,获得10
8秒前
英俊的铭应助0000采纳,获得10
8秒前
8秒前
xxx发布了新的文献求助10
10秒前
10秒前
yang发布了新的文献求助30
10秒前
李爱国应助KXQ采纳,获得10
10秒前
10秒前
10秒前
雪白的小土豆完成签到,获得积分10
10秒前
tuiiao完成签到 ,获得积分10
11秒前
黄礼韬发布了新的文献求助10
12秒前
李四发布了新的文献求助10
14秒前
qing完成签到,获得积分10
14秒前
15秒前
XY发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049