清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for real-time prediction of complications in critical care: a retrospective study

医学 回顾性队列研究 梅德林 重症监护医学 急诊医学 内科学 政治学 法学
作者
Alexander Meyer,Dina Zverinski,Boris Pfahringer,Jörg Kempfert,Titus Küehne,Simon H. Sündermann,Christof Stamm,Thomas Hofmann,Volkmar Falk,Carsten Eickhoff
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:6 (12): 905-914 被引量:289
标识
DOI:10.1016/s2213-2600(18)30300-x
摘要

Background The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. Methods We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. Findings Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23–0·35) for bleeding, by 0·24 (0·19–0·29) for mortality, and by 0·24 (0·13–0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03–0·15; p=0·0026) for bleeding, of 0·18 (0·07–0·29; p=0·0013) for mortality, and of 0·25 (0·18–0·32; p<0·0001) for renal failure. Interpretation The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. Funding No specific funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经白亦完成签到 ,获得积分10
9秒前
香蕉觅云应助cc采纳,获得10
12秒前
24秒前
cc发布了新的文献求助10
29秒前
Yini应助Kevin采纳,获得30
1分钟前
皮皮虾完成签到 ,获得积分10
1分钟前
2分钟前
宁幼萱发布了新的文献求助10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
邢夏之完成签到 ,获得积分10
3分钟前
云朵儿完成签到,获得积分10
3分钟前
chengmin完成签到 ,获得积分10
4分钟前
姚芭蕉完成签到 ,获得积分0
4分钟前
一盏壶完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
mzhang2完成签到 ,获得积分10
4分钟前
Mtx3098520564完成签到 ,获得积分10
4分钟前
南巷完成签到,获得积分10
4分钟前
单小芫完成签到 ,获得积分10
5分钟前
5分钟前
tlight1740发布了新的文献求助10
6分钟前
John完成签到 ,获得积分10
6分钟前
和光同尘完成签到,获得积分10
6分钟前
tlight1740完成签到,获得积分10
6分钟前
拼搏迎梦完成签到,获得积分10
7分钟前
苹果的苹完成签到,获得积分10
7分钟前
善学以致用应助hairgod采纳,获得10
7分钟前
8分钟前
kmzzy完成签到,获得积分10
8分钟前
Akim应助咕咕咕采纳,获得10
8分钟前
8分钟前
LYY发布了新的文献求助10
8分钟前
善学以致用应助LYY采纳,获得30
8分钟前
9分钟前
9分钟前
9分钟前
宁幼萱发布了新的文献求助10
9分钟前
hairgod发布了新的文献求助10
9分钟前
Kevin发布了新的文献求助30
9分钟前
hairgod完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4965503
求助须知:如何正确求助?哪些是违规求助? 4224039
关于积分的说明 13155078
捐赠科研通 4009855
什么是DOI,文献DOI怎么找? 2194569
邀请新用户注册赠送积分活动 1208098
关于科研通互助平台的介绍 1121294