Machine learning for real-time prediction of complications in critical care: a retrospective study

医学 回顾性队列研究 梅德林 重症监护医学 急诊医学 内科学 政治学 法学
作者
Alexander Meyer,Dina Zverinski,Boris Pfahringer,Jörg Kempfert,Titus Küehne,Simon H. Sündermann,Christof Stamm,Thomas Hofmann,Volkmar Falk,Carsten Eickhoff
出处
期刊:The Lancet Respiratory Medicine [Elsevier BV]
卷期号:6 (12): 905-914 被引量:289
标识
DOI:10.1016/s2213-2600(18)30300-x
摘要

Background The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. Methods We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. Findings Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23–0·35) for bleeding, by 0·24 (0·19–0·29) for mortality, and by 0·24 (0·13–0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03–0·15; p=0·0026) for bleeding, of 0·18 (0·07–0·29; p=0·0013) for mortality, and of 0·25 (0·18–0·32; p<0·0001) for renal failure. Interpretation The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. Funding No specific funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡完成签到 ,获得积分10
1秒前
Rondab应助敏感妙松采纳,获得80
2秒前
姜露萍发布了新的文献求助30
2秒前
张雯思发布了新的文献求助10
2秒前
2秒前
你吼发布了新的文献求助10
3秒前
Hhbbb完成签到 ,获得积分10
4秒前
重重完成签到 ,获得积分10
5秒前
zjx完成签到,获得积分10
6秒前
可爱归尘发布了新的文献求助10
7秒前
上官若男应助天边外采纳,获得10
8秒前
9秒前
10秒前
111发布了新的文献求助100
13秒前
睡醒了发布了新的文献求助30
14秒前
14秒前
14秒前
橙银完成签到,获得积分10
14秒前
清爽代芹完成签到,获得积分10
15秒前
小U发布了新的文献求助10
15秒前
16秒前
zz完成签到,获得积分10
16秒前
an完成签到,获得积分20
16秒前
张雯思发布了新的文献求助10
17秒前
徐州檀完成签到 ,获得积分10
17秒前
爆米花应助li采纳,获得10
18秒前
罗氏集团发布了新的文献求助10
18秒前
hhr完成签到 ,获得积分10
18秒前
halo发布了新的文献求助10
19秒前
Moiraisonline完成签到,获得积分10
20秒前
浅沫juanjuan完成签到 ,获得积分10
22秒前
打打应助an采纳,获得10
22秒前
23秒前
Murphy_H完成签到,获得积分10
23秒前
23秒前
24秒前
anan完成签到 ,获得积分10
24秒前
在水一方应助Drogoo采纳,获得10
25秒前
Akim应助Drogoo采纳,获得10
25秒前
共享精神应助Drogoo采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075