清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for real-time prediction of complications in critical care: a retrospective study

医学 重症监护 急症护理 肾脏替代疗法 回顾性队列研究 医疗保健 重症监护医学 急诊医学 外科 经济增长 经济
作者
Alexander Meyer,Dina Zverinski,Boris Pfahringer,Jörg Kempfert,Titus Küehne,Simon Sündermann,Christof Stamm,Thomas Hofmann,Volkmar Falk,Carsten Eickhoff
出处
期刊:The Lancet Respiratory Medicine [Elsevier]
卷期号:6 (12): 905-914 被引量:275
标识
DOI:10.1016/s2213-2600(18)30300-x
摘要

Background The large amount of clinical signals in intensive care units can easily overwhelm health-care personnel and can lead to treatment delays, suboptimal care, or clinical errors. The aim of this study was to apply deep machine learning methods to predict severe complications during critical care in real time after cardiothoracic surgery. Methods We used deep learning methods (recurrent neural networks) to predict several severe complications (mortality, renal failure with a need for renal replacement therapy, and postoperative bleeding leading to operative revision) in post cardiosurgical care in real time. Adult patients who underwent major open heart surgery from Jan 1, 2000, to Dec 31, 2016, in a German tertiary care centre for cardiovascular diseases formed the main derivation dataset. We measured the accuracy and timeliness of the deep learning model's forecasts and compared predictive quality to that of established standard-of-care clinical reference tools (clinical rule for postoperative bleeding, Simplified Acute Physiology Score II for mortality, and the Kidney Disease: Improving Global Outcomes staging criteria for acute renal failure) using positive predictive value (PPV), negative predictive value, sensitivity, specificity, area under the curve (AUC), and the F1 measure (which computes a harmonic mean of sensitivity and PPV). Results were externally retrospectively validated with 5898 cases from the published MIMIC-III dataset. Findings Of 47 559 intensive care admissions (corresponding to 42 007 patients), we included 11 492 (corresponding to 9269 patients). The deep learning models yielded accurate predictions with the following PPV and sensitivity scores: PPV 0·90 and sensitivity 0·85 for mortality, 0·87 and 0·94 for renal failure, and 0·84 and 0·74 for bleeding. The predictions significantly outperformed the standard clinical reference tools, improving the absolute complication prediction AUC by 0·29 (95% CI 0·23–0·35) for bleeding, by 0·24 (0·19–0·29) for mortality, and by 0·24 (0·13–0·35) for renal failure (p<0·0001 for all three analyses). The deep learning methods showed accurate predictions immediately after patient admission to the intensive care unit. We also observed an increase in performance in our validation cohort when the machine learning approach was tested against clinical reference tools, with absolute improvements in AUC of 0·09 (95% CI 0·03–0·15; p=0·0026) for bleeding, of 0·18 (0·07–0·29; p=0·0013) for mortality, and of 0·25 (0·18–0·32; p<0·0001) for renal failure. Interpretation The observed improvements in prediction for all three investigated clinical outcomes have the potential to improve critical care. These findings are noteworthy in that they use routinely collected clinical data exclusively, without the need for any manual processing. The deep machine learning method showed AUC scores that significantly surpass those of clinical reference tools, especially soon after admission. Taken together, these properties are encouraging for prospective deployment in critical care settings to direct the staff's attention towards patients who are most at risk. Funding No specific funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
Ava应助Mine采纳,获得50
24秒前
晶杰发布了新的文献求助10
1分钟前
hongxuezhi完成签到,获得积分10
2分钟前
2分钟前
Mine发布了新的文献求助50
2分钟前
晶杰完成签到 ,获得积分10
2分钟前
大个应助雅樱采纳,获得10
3分钟前
Hello应助要减肥的婷冉采纳,获得10
3分钟前
要减肥的婷冉完成签到,获得积分10
3分钟前
3分钟前
Mine完成签到,获得积分10
3分钟前
3分钟前
5分钟前
6分钟前
jyy应助FUNG采纳,获得10
6分钟前
6分钟前
慧喆完成签到 ,获得积分10
6分钟前
刘佳佳完成签到 ,获得积分10
7分钟前
YANGLan完成签到,获得积分10
7分钟前
赘婿应助科研通管家采纳,获得10
8分钟前
迷茫的一代完成签到,获得积分10
8分钟前
FUNG发布了新的文献求助10
9分钟前
肆肆完成签到,获得积分10
9分钟前
Tei完成签到,获得积分10
9分钟前
xaopng完成签到,获得积分10
9分钟前
小西完成签到 ,获得积分10
10分钟前
Anan完成签到,获得积分10
11分钟前
木南大宝完成签到 ,获得积分10
11分钟前
乐乐应助Anan采纳,获得10
12分钟前
12分钟前
Anan发布了新的文献求助10
12分钟前
12分钟前
去去去去发布了新的文献求助10
12分钟前
科研通AI2S应助去去去去采纳,获得10
13分钟前
紫熊完成签到,获得积分10
14分钟前
joe完成签到 ,获得积分0
15分钟前
oracl完成签到 ,获得积分10
16分钟前
lilili发布了新的文献求助10
16分钟前
所所应助HudaBala采纳,获得10
16分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335