Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data

分割 特质 茎叶展示 激光雷达 性状 图像分割 区域增长 预处理器 生物 人工智能 农学 计算机科学 遥感 表型 尺度空间分割 地理 基因 生物化学 程序设计语言
作者
Shichao Jin,Yanjun Su,Fangfang Wu,Shuxin Pang,Shang Gao,Tianyu Hu,Jin Liu,Qinghua Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (3): 1336-1346 被引量:124
标识
DOI:10.1109/tgrs.2018.2866056
摘要

Accurate and high throughput extraction of crop phenotypic traits, as a crucial step of molecular breeding, is of great importance for yield increasing. However, automatic stem-leaf segmentation as a prerequisite of many precise phenotypic trait extractions is still a big challenge. Current works focus on the study of the 2-D image-based segmentation, which are sensitive to illumination and occlusion. Light detection and ranging (LiDAR) can obtain accurate 3-D information with its active laser scanning and strong penetration ability, which breaks through phenotyping from 2-D to 3-D. However, few researches have addressed the problem of the LiDAR-based stem-leaf segmentation. In this paper, we proposed a median normalized-vector growth (MNVG) algorithm, which can segment stem and leaf with four steps, i.e., preprocessing, stem growth, leaf growth, and postprocessing. The MNVG method was tested by 30 maize samples with different heights, compactness, leaf numbers, and densities from three growing stages. Moreover, phenotypic traits at leaf, stem, and individual levels were extracted with the truly segmented instances. The mean accuracy of segmentation at point level in terms of the recall, precision, F-score, and overall accuracy were 0.92, 0.93, 0.92, and 0.93, respectively. The accuracy of phenotypic trait extraction in leaf, stem, and individual levels ranged from 0.81 to 0.95, 0.64 to 0.97, and 0.96 to 1, respectively. To our knowledge, this paper proposed the first LiDAR-based stem-leaf segmentation and phenotypic trait extraction method in agriculture field, which may contribute to the study of LiDAR-based plant phonemics and precise agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的尔烟完成签到,获得积分10
刚刚
刚刚
王瑾言完成签到,获得积分20
1秒前
1秒前
文静的摩托完成签到,获得积分10
1秒前
汉堡包应助刘悦采纳,获得10
1秒前
李琦完成签到,获得积分10
1秒前
1秒前
Orange应助沙拉酱采纳,获得10
2秒前
稳重的小杨完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
祝大家论文投一个中一个完成签到,获得积分20
2秒前
2秒前
LLLi完成签到,获得积分10
2秒前
2秒前
等待靖儿完成签到,获得积分10
3秒前
科研通AI6应助sunfield2014采纳,获得10
3秒前
LLL发布了新的文献求助10
3秒前
3秒前
3秒前
lyu发布了新的文献求助30
4秒前
LQYWH发布了新的文献求助10
4秒前
4秒前
4秒前
斯文友琴完成签到,获得积分10
5秒前
小蘑菇应助深情的秋白采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
GPTea应助科研通管家采纳,获得20
5秒前
红豆盖饭发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
bjbmtxy应助科研通管家采纳,获得10
5秒前
Zhou应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531567
求助须知:如何正确求助?哪些是违规求助? 4620363
关于积分的说明 14572950
捐赠科研通 4560019
什么是DOI,文献DOI怎么找? 2498695
邀请新用户注册赠送积分活动 1478617
关于科研通互助平台的介绍 1449993