Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data

分割 特质 茎叶展示 激光雷达 性状 图像分割 区域增长 预处理器 生物 人工智能 农学 计算机科学 遥感 表型 尺度空间分割 地理 基因 生物化学 程序设计语言
作者
Shichao Jin,Yanjun Su,Fangfang Wu,Shuxin Pang,Shang Gao,Tianyu Hu,Jin Liu,Qinghua Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (3): 1336-1346 被引量:124
标识
DOI:10.1109/tgrs.2018.2866056
摘要

Accurate and high throughput extraction of crop phenotypic traits, as a crucial step of molecular breeding, is of great importance for yield increasing. However, automatic stem-leaf segmentation as a prerequisite of many precise phenotypic trait extractions is still a big challenge. Current works focus on the study of the 2-D image-based segmentation, which are sensitive to illumination and occlusion. Light detection and ranging (LiDAR) can obtain accurate 3-D information with its active laser scanning and strong penetration ability, which breaks through phenotyping from 2-D to 3-D. However, few researches have addressed the problem of the LiDAR-based stem-leaf segmentation. In this paper, we proposed a median normalized-vector growth (MNVG) algorithm, which can segment stem and leaf with four steps, i.e., preprocessing, stem growth, leaf growth, and postprocessing. The MNVG method was tested by 30 maize samples with different heights, compactness, leaf numbers, and densities from three growing stages. Moreover, phenotypic traits at leaf, stem, and individual levels were extracted with the truly segmented instances. The mean accuracy of segmentation at point level in terms of the recall, precision, F-score, and overall accuracy were 0.92, 0.93, 0.92, and 0.93, respectively. The accuracy of phenotypic trait extraction in leaf, stem, and individual levels ranged from 0.81 to 0.95, 0.64 to 0.97, and 0.96 to 1, respectively. To our knowledge, this paper proposed the first LiDAR-based stem-leaf segmentation and phenotypic trait extraction method in agriculture field, which may contribute to the study of LiDAR-based plant phonemics and precise agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘柑橘完成签到,获得积分10
1秒前
1秒前
hqq131456完成签到,获得积分20
1秒前
乐观芷蕊完成签到,获得积分10
1秒前
嘿休休发布了新的文献求助10
2秒前
无畏阿玲完成签到,获得积分10
3秒前
BowieHuang应助buno采纳,获得30
3秒前
大力沛萍发布了新的文献求助10
4秒前
4秒前
lytelope完成签到,获得积分10
5秒前
标致夜蕾完成签到,获得积分10
5秒前
Nell发布了新的文献求助10
6秒前
6秒前
7秒前
独特雪碧完成签到,获得积分10
7秒前
7秒前
无花果应助qing采纳,获得10
8秒前
朴实的晓筠完成签到,获得积分10
8秒前
嗷卵犟完成签到,获得积分10
8秒前
zhu完成签到,获得积分10
8秒前
羊咩咩哒发布了新的文献求助10
8秒前
beryl关注了科研通微信公众号
8秒前
305发布了新的文献求助10
9秒前
无花果应助ZinyamHui采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
lytelope发布了新的文献求助10
11秒前
汉堡包应助高兴的向秋采纳,获得10
12秒前
12秒前
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
成就凡双应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527