Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data

分割 特质 茎叶展示 激光雷达 性状 图像分割 区域增长 预处理器 生物 人工智能 农学 计算机科学 遥感 表型 尺度空间分割 地理 基因 生物化学 程序设计语言
作者
Shichao Jin,Yanjun Su,Fangfang Wu,Shuxin Pang,Shang Gao,Tianyu Hu,Jin Liu,Qinghua Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (3): 1336-1346 被引量:124
标识
DOI:10.1109/tgrs.2018.2866056
摘要

Accurate and high throughput extraction of crop phenotypic traits, as a crucial step of molecular breeding, is of great importance for yield increasing. However, automatic stem-leaf segmentation as a prerequisite of many precise phenotypic trait extractions is still a big challenge. Current works focus on the study of the 2-D image-based segmentation, which are sensitive to illumination and occlusion. Light detection and ranging (LiDAR) can obtain accurate 3-D information with its active laser scanning and strong penetration ability, which breaks through phenotyping from 2-D to 3-D. However, few researches have addressed the problem of the LiDAR-based stem-leaf segmentation. In this paper, we proposed a median normalized-vector growth (MNVG) algorithm, which can segment stem and leaf with four steps, i.e., preprocessing, stem growth, leaf growth, and postprocessing. The MNVG method was tested by 30 maize samples with different heights, compactness, leaf numbers, and densities from three growing stages. Moreover, phenotypic traits at leaf, stem, and individual levels were extracted with the truly segmented instances. The mean accuracy of segmentation at point level in terms of the recall, precision, F-score, and overall accuracy were 0.92, 0.93, 0.92, and 0.93, respectively. The accuracy of phenotypic trait extraction in leaf, stem, and individual levels ranged from 0.81 to 0.95, 0.64 to 0.97, and 0.96 to 1, respectively. To our knowledge, this paper proposed the first LiDAR-based stem-leaf segmentation and phenotypic trait extraction method in agriculture field, which may contribute to the study of LiDAR-based plant phonemics and precise agriculture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的胡萝卜完成签到 ,获得积分10
1秒前
1秒前
完美世界应助xxy采纳,获得30
2秒前
Ohh完成签到,获得积分10
2秒前
2秒前
sl发布了新的文献求助10
3秒前
3秒前
龙龙ff11_完成签到,获得积分10
3秒前
3秒前
英俊的铭应助RYK采纳,获得10
3秒前
丰知然应助晴空万里采纳,获得10
3秒前
3秒前
4秒前
情怀应助麦客采纳,获得10
5秒前
5秒前
6秒前
茗泠发布了新的文献求助10
7秒前
科研通AI2S应助Zongxin采纳,获得10
7秒前
文献狗发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
9秒前
852应助羊大侠采纳,获得10
9秒前
Miracle完成签到,获得积分10
9秒前
Nhyyy发布了新的文献求助10
9秒前
乔木发布了新的文献求助10
10秒前
傲娇玉米发布了新的文献求助10
10秒前
顾乐乐完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
NexusExplorer应助姜恒采纳,获得10
12秒前
12秒前
Shuyinganxiang完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
3d54s2发布了新的文献求助10
15秒前
耍酷含羞草完成签到,获得积分10
15秒前
RYK发布了新的文献求助10
16秒前
Ding发布了新的文献求助10
17秒前
麦客发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283