已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data

分割 特质 茎叶展示 激光雷达 性状 图像分割 区域增长 预处理器 生物 人工智能 农学 计算机科学 遥感 表型 尺度空间分割 地理 基因 生物化学 程序设计语言
作者
Shichao Jin,Yanjun Su,Fangfang Wu,Shuxin Pang,Shang Gao,Tianyu Hu,Jin Liu,Qinghua Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (3): 1336-1346 被引量:124
标识
DOI:10.1109/tgrs.2018.2866056
摘要

Accurate and high throughput extraction of crop phenotypic traits, as a crucial step of molecular breeding, is of great importance for yield increasing. However, automatic stem-leaf segmentation as a prerequisite of many precise phenotypic trait extractions is still a big challenge. Current works focus on the study of the 2-D image-based segmentation, which are sensitive to illumination and occlusion. Light detection and ranging (LiDAR) can obtain accurate 3-D information with its active laser scanning and strong penetration ability, which breaks through phenotyping from 2-D to 3-D. However, few researches have addressed the problem of the LiDAR-based stem-leaf segmentation. In this paper, we proposed a median normalized-vector growth (MNVG) algorithm, which can segment stem and leaf with four steps, i.e., preprocessing, stem growth, leaf growth, and postprocessing. The MNVG method was tested by 30 maize samples with different heights, compactness, leaf numbers, and densities from three growing stages. Moreover, phenotypic traits at leaf, stem, and individual levels were extracted with the truly segmented instances. The mean accuracy of segmentation at point level in terms of the recall, precision, F-score, and overall accuracy were 0.92, 0.93, 0.92, and 0.93, respectively. The accuracy of phenotypic trait extraction in leaf, stem, and individual levels ranged from 0.81 to 0.95, 0.64 to 0.97, and 0.96 to 1, respectively. To our knowledge, this paper proposed the first LiDAR-based stem-leaf segmentation and phenotypic trait extraction method in agriculture field, which may contribute to the study of LiDAR-based plant phonemics and precise agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
bianxxing发布了新的文献求助30
2秒前
善学以致用应助寻梦采纳,获得10
2秒前
李爱国应助张琳琳采纳,获得10
5秒前
归尘发布了新的文献求助30
7秒前
符小狮关注了科研通微信公众号
7秒前
8秒前
星辰大海应助狗子采纳,获得10
9秒前
王大橘完成签到 ,获得积分10
14秒前
洁白的故人完成签到 ,获得积分10
15秒前
yulijuan发布了新的文献求助10
15秒前
16秒前
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
符小狮发布了新的文献求助10
22秒前
安诺发布了新的文献求助10
23秒前
23秒前
姜茶完成签到 ,获得积分10
24秒前
慕青应助Leah采纳,获得10
24秒前
博修发布了新的文献求助10
24秒前
华仔应助星期五采纳,获得10
26秒前
yulijuan完成签到,获得积分10
26秒前
出云天花完成签到,获得积分10
27秒前
27秒前
27秒前
wang发布了新的文献求助10
27秒前
深情安青应助coconut采纳,获得10
30秒前
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962973
求助须知:如何正确求助?哪些是违规求助? 3508922
关于积分的说明 11144066
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791701
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803583