Electrochemically Activated Nickel–Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel–Zinc Batteries

材料科学 阴极 碳纤维 复合数 活性炭 电化学 冶金 无机化学 电极 复合材料 化学 有机化学 物理化学 吸附
作者
Lingyi Meng,Dun Lin,Jing Wang,Yinxiang Zeng,Yi Liu,Xihong Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (16): 14854-14861 被引量:52
标识
DOI:10.1021/acsami.9b04006
摘要

Aqueous rechargeable nickel–zinc batteries are highly attractive for large-scale energy storage for their high output voltage, low cost, and excellent safety; however, their inferior cycling durability due to the degradation of the Ni-based cathode is a major obstacle for their applications. In this context, we develop a new kind of porous electrochemically activated Ni nanoparticle/nitrogen-doped carbon (Ni/NC) composite material as ultrastable cathodes for advanced aqueous rechargeable nickel–zinc batteries. The in situ formation of a highly active NiOx(OH)y layer on Ni nanoparticles and a unique hydrophilic porous architecture endow the activated Ni/NC composite with high accessible area, abundant active sites, easy electrolyte permeation, and shortened charge/ion transport pathway. Consequently, a high capacity of 381.2 μAh cm–3 with an outstanding rate capability is achieved by the Ni–Zn battery using the optimized activated Ni/NC composite as the cathode (about 30-fold enhancement compared to that with the pristine Ni/NC composite as the cathode). More impressively, the as-assembled Ni–Zn battery achieves an unprecedented cyclic stability with no capacity loss after 36 000 charge/discharge cycles. This is the highest cyclic durability ever for Ni–Zn batteries and other aqueous rechargeable batteries. This novel efficient electrochemical activation strategy to achieve a high-performance cathode and demonstration of an ultrastable aqueous rechargeable Ni–Zn battery may open up new vistas on the development of more advanced and reliable energy storage materials and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mark完成签到,获得积分10
1秒前
1秒前
levi发布了新的文献求助10
1秒前
1秒前
2秒前
小橙子完成签到,获得积分10
2秒前
孤鸿完成签到,获得积分20
2秒前
2秒前
现代凝安发布了新的文献求助10
3秒前
王博士完成签到,获得积分10
3秒前
3秒前
852应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
禾斗应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
BingHe完成签到,获得积分10
6秒前
玳瑁猫发布了新的文献求助10
6秒前
孤鸿发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
狄鹤轩发布了新的文献求助10
8秒前
小橙子发布了新的文献求助10
8秒前
8秒前
ysm完成签到,获得积分10
9秒前
CC关闭了CC文献求助
9秒前
9秒前
宫野珏完成签到,获得积分20
9秒前
林长渠完成签到,获得积分10
9秒前
玛卡粑卡完成签到,获得积分10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744491
求助须知:如何正确求助?哪些是违规求助? 3287318
关于积分的说明 10053328
捐赠科研通 3003557
什么是DOI,文献DOI怎么找? 1649127
邀请新用户注册赠送积分活动 785041
科研通“疑难数据库(出版商)”最低求助积分说明 750915