Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning

光催化 插层(化学) 离域电子 材料科学 光化学 电子 电子传输链 纳米技术 反应速率 化学工程 化学 催化作用 无机化学 有机化学 物理 量子力学 生物化学 工程类
作者
Jieyuan Li,Xing’an Dong,Yanjuan Sun,Guangming Jiang,Ying‐Hao Chu,Shuncheng Lee,Dong Fan
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:239: 187-195 被引量:145
标识
DOI:10.1016/j.apcatb.2018.08.019
摘要

Regulating the rate-determining step in photocatalysis is crucial for advancing its application in environmental remediation. However, approaches for tailoring the rate-determining step have been largely overlooked. Herein, Ca-intercalated g-C3N4 is designed as a model photocatalyst to deeply understand the electron transportation behavior and the mechanisms of photocatalytic NO removal. The intercalation of Ca builds an interlayer channel for electron migration between g-C3N4 layers, which extends the sp2 hybridized planes and enables the electrons to transform from a delocalized state to a localized state around Ca, leading to the formation of localized excess electrons (e−ex). Under visible light irradiation, these e−ex are subsequently captured by gas molecules for more efficient reactive oxygen species (ROS) generation and reactant activation. The ROS generated by Ca-intercalated g-C3N4 demonstrate stronger oxidation capability than those generated by pure CN. The ROS directly participate in photocatalytic NO oxidation and tailor the rate-determining step by decreasing the reaction activation energies, resulting in an overall increase in NO removal efficiency and a reduction in NO2 production. The photocatalytic efficiency and selectivity have been significantly improved owing to the functionality of the e−ex. Using closely combined experimental and theoretical methods, this work provides a new approach for understanding the behaviors of e−ex in environmental photocatalysis and tailoring the rate-determining step to enhance reaction efficiency, achieving efficient and safe air purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orangel完成签到,获得积分10
刚刚
半壶月色半边天完成签到 ,获得积分10
1秒前
tmpstlml发布了新的文献求助10
1秒前
2秒前
2秒前
不安饼干完成签到 ,获得积分10
4秒前
活泼的飞鸟完成签到,获得积分10
4秒前
5秒前
xuyun发布了新的文献求助10
5秒前
5秒前
zzcres完成签到,获得积分10
7秒前
eeeee完成签到 ,获得积分10
7秒前
乐观德地完成签到,获得积分10
8秒前
大个应助yf_zhu采纳,获得10
8秒前
llk发布了新的文献求助10
9秒前
一只大肥猫完成签到,获得积分10
9秒前
9秒前
11秒前
11秒前
11秒前
11秒前
科研通AI5应助GGG采纳,获得10
12秒前
12秒前
14秒前
Ann发布了新的文献求助20
14秒前
14秒前
buno应助duxinyue采纳,获得10
14秒前
xlj发布了新的文献求助10
15秒前
15秒前
可爱的函函应助zhen采纳,获得10
16秒前
研友_VZG7GZ应助dingdong采纳,获得10
17秒前
17秒前
李成恩完成签到 ,获得积分10
18秒前
心碎的黄焖鸡完成签到 ,获得积分10
18秒前
琪琪扬扬发布了新的文献求助10
19秒前
20秒前
20秒前
宗磬完成签到,获得积分10
21秒前
NexusExplorer应助搞怪不言采纳,获得10
22秒前
科研通AI5应助一天八杯水采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808