Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning

光催化 插层(化学) 离域电子 材料科学 光化学 电子 电子传输链 纳米技术 反应速率 化学工程 化学 催化作用 无机化学 有机化学 物理 量子力学 生物化学 工程类
作者
Jieyuan Li,Xing’an Dong,Yanjuan Sun,Guangming Jiang,Yinghao Chu,Shuncheng Lee,Fan Dong
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:239: 187-195 被引量:156
标识
DOI:10.1016/j.apcatb.2018.08.019
摘要

Regulating the rate-determining step in photocatalysis is crucial for advancing its application in environmental remediation. However, approaches for tailoring the rate-determining step have been largely overlooked. Herein, Ca-intercalated g-C3N4 is designed as a model photocatalyst to deeply understand the electron transportation behavior and the mechanisms of photocatalytic NO removal. The intercalation of Ca builds an interlayer channel for electron migration between g-C3N4 layers, which extends the sp2 hybridized planes and enables the electrons to transform from a delocalized state to a localized state around Ca, leading to the formation of localized excess electrons (e−ex). Under visible light irradiation, these e−ex are subsequently captured by gas molecules for more efficient reactive oxygen species (ROS) generation and reactant activation. The ROS generated by Ca-intercalated g-C3N4 demonstrate stronger oxidation capability than those generated by pure CN. The ROS directly participate in photocatalytic NO oxidation and tailor the rate-determining step by decreasing the reaction activation energies, resulting in an overall increase in NO removal efficiency and a reduction in NO2 production. The photocatalytic efficiency and selectivity have been significantly improved owing to the functionality of the e−ex. Using closely combined experimental and theoretical methods, this work provides a new approach for understanding the behaviors of e−ex in environmental photocatalysis and tailoring the rate-determining step to enhance reaction efficiency, achieving efficient and safe air purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NaNA发布了新的文献求助10
刚刚
1秒前
刘锦嘉应助古德猫采纳,获得10
1秒前
2秒前
Leticia完成签到,获得积分10
2秒前
善学以致用应助王大炮采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
彭于晏应助90099采纳,获得10
5秒前
爱芹发布了新的文献求助10
5秒前
李昱发布了新的文献求助10
5秒前
Become发布了新的文献求助10
5秒前
宁子发布了新的文献求助10
5秒前
5秒前
英姑应助wllllll采纳,获得10
6秒前
JYL发布了新的文献求助10
6秒前
筱xiao完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
张三完成签到,获得积分20
7秒前
8秒前
8秒前
9秒前
fireking_sid发布了新的文献求助10
9秒前
小蘑菇应助毛绒绒窝铺采纳,获得10
9秒前
9秒前
桔子完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
wanna发布了新的文献求助10
11秒前
zhou完成签到,获得积分10
11秒前
小文仙丹完成签到,获得积分10
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010