材料科学
小旋翼机
最小曲面
复合材料
选择性激光熔化
吸收(声学)
钻石
屈曲
共聚物
几何学
微观结构
数学
聚合物
作者
Lei Zhang,S. Feih,Stephen Daynes,Shuai Chang,Michael Yu Wang,Jun Wei,Wen Feng Lu
标识
DOI:10.1016/j.addma.2018.08.007
摘要
Abstract Designing metallic cellular structures with triply periodic minimal surface (TPMS) sheet cores is a novel approach for lightweight and multi-functional structural applications. Different from current honeycombs and lattices, TPMS sheet structures are composed of continuous and smooth shells, allowing for large surface areas and continuous internal channels. In this paper, we investigate the mechanical properties and energy absorption abilities of three types of TPMS sheet structures (Primitive, Diamond, and Gyroid) fabricated by selective laser melting (SLM) with 316 L stainless steel under compression loading and classify their failure mechanisms and printing accuracy with the help of numerical analysis. Experimental results reveal the superior stiffness, plateau stress and energy absorption ability of TPMS sheet structures compared to body-centred cubic lattices, with Diamond-type sheet structures performing best. Nonlinear finite element simulation results also show that Diamond and Gyroid sheet structures display relatively uniform stress distributions across all lattice cells under compression, leading to stable collapse mechanisms and desired energy absorption performance. In contrast, Primitive-type structures display rapid diagonal shear band development followed by localized wall buckling. Lastly, an energy absorption diagram is developed to facilitate a systematic way to select optimal densities of TPMS structures for energy absorbing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI