重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance

材料科学 材料性能 挤压 3D打印 复合材料 接口(物质) 熔丝制造 极限抗拉强度 物流 3d打印 机械工程 工程制图 工程类 制造工程 毛细管作用 生物 毛细管数 生态学
作者
Luiz Rolim Lopes,Alexandre Ferreira da Silva,O. S. Carneiro
出处
期刊:Additive manufacturing [Elsevier]
卷期号:23: 45-52 被引量:163
标识
DOI:10.1016/j.addma.2018.06.027
摘要

Multi-material extrusion in 3D printing is gaining attention due to a wide range of possibilities that it provides, specially driven by the commercial availability of a large variety of non-conventional filament materials. As a result, one can print models that are not limited to aesthetics purposes but can now also provide larger functionality, and therefore with mechanical performance tuned according to their purpose. With this in mind, this paper addresses the mechanical performance of multi-material printed objects, specially focused on the interface zone generated between the different materials at their geometrical boundaries. Tensile test specimens were designed and printed in three types: (A) a single-material specimen printed by a single extrusion head; (B) a single-material but multi-section specimen printed in a zebra-crossing structure by two extrusion heads; and (C) a multi-material specimen printed with two materials in a zebra-crossing pattern. The materials considered were PLA, TPU and PET. The comparison of the mechanical performance between Type-A and -B specimens demonstrated the negative influence of the presence of a geometrical boundary interface between the same material. On the other hand, the comparison between Type-B and -C demonstrated how the previous performance loss was yet more drastic when the lack of chemical affinity between the materials was present. The methodology proposed to assess the quality of the pairs of materials selected is innovative, and enabled to depict the importance of the boundary design in multi-material printing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助GG采纳,获得10
刚刚
大力山槐完成签到,获得积分10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
SciGPT应助11采纳,获得10
1秒前
2秒前
2秒前
852应助HaoDeng采纳,获得10
2秒前
2秒前
丘比特应助跳跃的问玉采纳,获得10
3秒前
香蕉觅云应助哈哈采纳,获得10
3秒前
dylan0113完成签到 ,获得积分10
3秒前
hj完成签到 ,获得积分10
3秒前
安白枫发布了新的文献求助10
3秒前
dandan完成签到,获得积分10
4秒前
灯箱发布了新的文献求助10
4秒前
py完成签到,获得积分20
4秒前
che发布了新的文献求助10
4秒前
4秒前
JamesPei应助清秀忆枫采纳,获得10
5秒前
田様应助刘轩雨采纳,获得10
5秒前
高高翅膀应助ZZJ采纳,获得10
5秒前
xiao142完成签到,获得积分10
5秒前
微笑幻波发布了新的文献求助10
5秒前
王旭发布了新的文献求助10
6秒前
QQ发布了新的文献求助10
6秒前
小蜗妞妞完成签到,获得积分10
7秒前
8秒前
芬里尔发布了新的文献求助10
8秒前
nannan完成签到,获得积分10
9秒前
酷酷的哈密瓜完成签到,获得积分20
9秒前
Ivan发布了新的文献求助10
10秒前
10秒前
11秒前
脆脆鲨发布了新的文献求助10
11秒前
11秒前
11秒前
安白枫完成签到,获得积分10
12秒前
Vanilla应助瘦瘦的语梦采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467477
求助须知:如何正确求助?哪些是违规求助? 4571182
关于积分的说明 14329082
捐赠科研通 4497783
什么是DOI,文献DOI怎么找? 2464081
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427654