Climate seasonality as an essential predictor of global fire activity

季节性 气候学 降水 环境科学 后发 生物群落 全球变化 气候变化 生态学 地理 气象学 生态系统 生物 地质学
作者
Michael V. Saha,Todd M. Scanlon,Paolo D’Odorico
出处
期刊:Global Ecology and Biogeography [Wiley]
卷期号:28 (2): 198-210 被引量:22
标识
DOI:10.1111/geb.12836
摘要

Abstract Aim Fire is a globally important disturbance that affects nearly all vegetated biomes. Previous regional studies have suggested that the predictable seasonal pattern of a climatic time series, or seasonality, might aid in the prediction of average fire activity, but it is not known whether these findings are applicable globally. Here, we investigate how seasonality can be used to explain variations in fire activity on a global scale. Location Global, 60° S–60° N. Time period Data averaged over the period 1999–2015. Methods We describe a method to partition a periodic seasonal cycle into two seasons and define conceptually simple temporal metrics that describe spatial variability in seasonality. We explore the usefulness of these metrics in explaining global fire activity using the average monthly time series of precipitation and temperature and a flexible machine learning procedure (random forests). Results A simple model that uses only precipitation and temperature amplitude and synchrony between wet and warm seasons correctly predicts 66% of the variability in global fire activity, substantially more than a model with mean annual temperature and precipitation. A more complex model that includes all nine metrics predicts 87% of variability in global fire activity. Main conclusions This study shows that seasonality of temperature and precipitation can be used to predict multi‐year average fire activity in a globally relevant way. The mechanisms highlighted in our work could be used to improve global fire models and enhance their ability to represent the spatial patterns of fire activity. Our method might also be useful in hindcasting historical fire using reanalysis or predicting future fire regimes using coarse output from climate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的剑发布了新的文献求助10
刚刚
冯兴龙发布了新的文献求助10
2秒前
JamesPei应助chuyue采纳,获得10
3秒前
4秒前
lstj6675发布了新的文献求助10
4秒前
morena发布了新的文献求助10
4秒前
5秒前
zzr元亨利贞完成签到,获得积分10
6秒前
10秒前
李健的粉丝团团长应助txf采纳,获得10
10秒前
captainHc完成签到,获得积分10
12秒前
Mystic发布了新的文献求助10
12秒前
健忘天问发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得30
15秒前
大个应助科研通管家采纳,获得10
15秒前
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
huhu发布了新的文献求助10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
17秒前
nicola发布了新的文献求助30
17秒前
18秒前
今后应助1234采纳,获得10
18秒前
19秒前
齐平露发布了新的文献求助10
20秒前
研友_VZG7GZ应助俊逸芸遥采纳,获得10
20秒前
丰富山灵发布了新的文献求助10
21秒前
乌克兰小乳猪关注了科研通微信公众号
22秒前
zl发布了新的文献求助20
22秒前
SQDHZJ发布了新的文献求助10
22秒前
FY发布了新的文献求助10
23秒前
24秒前
24秒前
HEIKU应助狂野的海雪采纳,获得10
25秒前
五十一笑声应助景自端采纳,获得10
26秒前
安详的冷安完成签到,获得积分10
26秒前
Eason完成签到,获得积分10
26秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503