已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network

清脆的 计算机科学 Cas9 引导RNA 卷积神经网络 计算生物学 深度学习 基因组工程 基因组编辑 人工智能 生物 基因 遗传学
作者
Xue Li,Bin Tang,Wei Chen,Jiesi Luo
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (1): 615-624 被引量:85
标识
DOI:10.1021/acs.jcim.8b00368
摘要

The CRISPR-Cas9 system derived from adaptive immunity in bacteria and archaea has been developed into a powerful tool for genome engineering with wide-ranging applications. Optimizing single-guide RNA (sgRNA) design to improve efficiency of target cleavage is a key step for successful gene editing using the CRISPR-Cas9 system. Because not all sgRNAs that cognate to a given target gene are equally effective, computational tools have been developed based on experimental data to increase the likelihood of selecting effective sgRNAs. Despite considerable efforts to date, it still remains a big challenge to accurately predict functional sgRNAs directly from large-scale sequence data. We propose DeepCas9, a deep-learning framework based on the convolutional neural network (CNN), to automatically learn the sequence determinants and further enable the identification of functional sgRNAs for the CRISPR-Cas9 system. We show that the CNN method outperforms previous methods in both (i) the ability to correctly identify highly active sgRNAs in experiments not used in the training and (ii) the ability to accurately predict the target efficacies of sgRNAs in different organisms. Besides, we further visualize the convolutional kernels and show the match of identified sequence signatures and known nucleotide preferences. We finally demonstrate the application of our method to the design of next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. We expect that DeepCas9 will assist in reducing the numbers of sgRNAs that must be experimentally validated to enable more effective and efficient genetic screens and genome engineering. DeepCas9 can be freely accessed via the Internet at https://github.com/lje00006/DeepCas9.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yoga完成签到 ,获得积分10
2秒前
2秒前
adeline完成签到,获得积分10
4秒前
李昶发布了新的文献求助10
6秒前
化学位移值完成签到 ,获得积分10
10秒前
阿呆完成签到,获得积分10
11秒前
15秒前
风来了发布了新的文献求助20
17秒前
柚子发布了新的文献求助10
20秒前
科研通AI2S应助健忘英姑采纳,获得10
23秒前
26秒前
JohnsonTse发布了新的文献求助10
30秒前
研友_VZG7GZ应助hyiyi采纳,获得10
30秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
33秒前
情怀应助科研通管家采纳,获得30
33秒前
8R60d8应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
8R60d8应助科研通管家采纳,获得10
33秒前
33秒前
缥缈的幻雪完成签到 ,获得积分10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
香芋应助科研通管家采纳,获得10
34秒前
香芋应助科研通管家采纳,获得30
34秒前
ding应助科研通管家采纳,获得10
34秒前
34秒前
wanci应助科研通管家采纳,获得10
34秒前
小吴完成签到 ,获得积分10
35秒前
35秒前
萤火虫完成签到,获得积分10
35秒前
35秒前
JohnsonTse完成签到,获得积分10
37秒前
Berthe完成签到 ,获得积分10
37秒前
萤火虫发布了新的文献求助10
38秒前
38秒前
39秒前
小鹿斑比发布了新的文献求助10
39秒前
无辜之卉发布了新的文献求助10
42秒前
oo发布了新的文献求助30
44秒前
852应助小鹿斑比采纳,获得10
44秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725129
求助须知:如何正确求助?哪些是违规求助? 3270246
关于积分的说明 9965146
捐赠科研通 2985203
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777724
科研通“疑难数据库(出版商)”最低求助积分说明 747171