Sonographic Measurement of Visceral Fat and Prediction of Metabolic Syndrome in the Elderly

医学 代谢综合征 内脏脂肪 内科学 老年学 肥胖 胰岛素抵抗
作者
Chi-Ren Hung,Chen-Wang Chang,Chih-Jen Chen,Ching-Wei Chang,Hui-Yun Cheng,Ming-Jen Chen
出处
期刊:International Journal of Gerontology 被引量:1
标识
DOI:10.1016/j.ijge.2018.05.003
摘要

Summary Background Visceral fat is considered important in the pathogenesis of metabolic syndrome (MS). Here, we developed a novel method for determining visceral fat by measuring liver–kidney space (LKS) on abdominal sonography and expanded its utilization in the elderly to predict MS. Methods To assess the correlation between the LKS and MS, 317 consecutive outpatients scheduled for health evaluation were retrospective analyzed. Anthropometric measurements, blood pressure, fasting blood glucose levels, and lipid profiles were obtained following standard protocols. On sonography, the thickness of visceral fat between the liver and right kidney was measured. We also compared its accuracy to predict MS with sonographic fatty liver changes. A total of 72 elderly patients older than 65 years were evaluated (mean age: 66.02 [65–83]). Results In the current study, LKS = 4 mm enabled a better prediction of MS. The area under the receiver operating characteristic curve was 0.626. The sensitivity and specificity for the presence of visceral fat to predict MS in the elderly were 0.58 and 0.73, respectively. The accuracy to predict MS was 68.1% for the measurement of visceral fat compared with 59.6% for sonographic fatty liver change in the elderly. Conclusion Measuring LKS by sonography may be a practical method for evaluating visceral fat in the elderly and for predicting MS better than sonographic fatty liver changes. LKS was more associated with abdominal girth and BMI in the elderly from the study supporting the observation that LKS are well correlated with general adiposity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luodd完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
1秒前
小吴发布了新的文献求助10
1秒前
甜甜灵槐发布了新的文献求助10
2秒前
yyang发布了新的文献求助10
2秒前
2秒前
超级水壶发布了新的文献求助10
2秒前
manan发布了新的文献求助10
2秒前
2秒前
fxy完成签到 ,获得积分10
3秒前
爆米花应助大意的安白采纳,获得10
3秒前
wen完成签到,获得积分10
3秒前
Lucas应助徐慕源采纳,获得10
3秒前
袁国惠发布了新的文献求助10
3秒前
加油发布了新的文献求助10
3秒前
天天快乐应助韭菜盒子采纳,获得10
3秒前
4秒前
圣晟胜发布了新的文献求助10
4秒前
耍酷的白梦完成签到,获得积分10
4秒前
斯文的若颜完成签到,获得积分10
5秒前
5秒前
Firefly完成签到,获得积分10
5秒前
zjh完成签到,获得积分20
5秒前
科研通AI5应助陆离采纳,获得10
6秒前
6秒前
芋泥螺蛳猫完成签到,获得积分10
6秒前
科研狗完成签到,获得积分10
7秒前
挡住所有坏运气888完成签到,获得积分10
7秒前
万能图书馆应助misalia采纳,获得10
7秒前
8秒前
分风吹完成签到 ,获得积分10
8秒前
杜嘟嘟发布了新的文献求助10
9秒前
QinMengyao发布了新的文献求助10
10秒前
李繁蕊发布了新的文献求助10
11秒前
眼睛大的鑫磊完成签到,获得积分10
11秒前
雪白红紫完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
Fareth发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740