A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China

多光谱图像 苔藓 遥感 干旱 环境科学 高光谱成像 多光谱模式识别 荒漠化 随机森林 土壤科学 地质学 计算机科学 生态学 生物 机器学习 古生物学
作者
Xiang Chen,Tao Wang,Shulin Liu,Fei Peng,Atsushi Tsunekawa,Wenping Kang,Zichen Guo,Kun Feng
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (11): 1286-1286 被引量:16
标识
DOI:10.3390/rs11111286
摘要

Biological soil crusts (BSCs) play an essential role in desert ecosystems. Knowledge of the distribution and disappearance of BSCs is vital for the management of ecosystems and for desertification researches. However, the major remote sensing approaches used to extract BSCs are multispectral indices, which lack accuracy, and hyperspectral indices, which have lower data availability and require a higher computational effort. This study employs random forest (RF) models to optimize the extraction of BSCs using band combinations similar to the two multispectral BSC indices (Crust Index-CI; Biological Soil Crust Index-BSCI), but covering all possible band combinations. Simulated multispectral datasets resampled from in-situ hyperspectral data were used to extract BSC information. Multispectral datasets (Landsat-8 and Sentinel-2 datasets) were then used to detect BSC coverage in Mu Us Sandy Land, located in northern China, where BSCs dominated by moss are widely distributed. The results show that (i) the spectral curves of moss-dominated BSCs are different from those of other typical land surfaces, (ii) the BSC coverage can be predicted using the simulated multispectral data (mean square error (MSE) < 0.01), (iii) Sentinel-2 satellite datasets with CI-based band combinations provided a reliable RF model for detecting moss-dominated BSCs (10-fold validation, R2 = 0.947; ground validation, R2 = 0.906). In conclusion, application of the RF algorithm to the Sentinel-2 dataset can precisely and effectively map BSCs dominated by moss. This new application can be used as a theoretical basis for detecting BSCs in other arid and semi-arid lands within desert ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
AD钙钙钙发布了新的文献求助30
2秒前
恩恩发布了新的文献求助10
2秒前
艾扎克发布了新的文献求助10
2秒前
Darjeeling发布了新的文献求助10
2秒前
自信的小ping子完成签到,获得积分10
2秒前
浮游应助YH采纳,获得10
3秒前
4秒前
4秒前
领导范儿应助jcd采纳,获得10
4秒前
5秒前
徐慕源完成签到,获得积分10
5秒前
muyu发布了新的文献求助10
6秒前
隐形曼青应助冰冰采纳,获得10
7秒前
孤独的心锁完成签到,获得积分10
8秒前
8秒前
科研式发布了新的文献求助10
8秒前
邱球球发布了新的文献求助10
8秒前
9秒前
Ava应助YYY666采纳,获得10
9秒前
wlscj应助甘sir采纳,获得20
10秒前
11秒前
酷酷的安柏完成签到 ,获得积分10
11秒前
天天快乐应助林钰浩采纳,获得10
11秒前
SQ完成签到,获得积分20
13秒前
顺利白竹发布了新的文献求助10
13秒前
diu应助炙热晓露采纳,获得30
13秒前
领导范儿应助小情思绪采纳,获得10
13秒前
14秒前
2025211022发布了新的文献求助30
15秒前
a.........发布了新的文献求助10
16秒前
ForestEcho发布了新的文献求助10
17秒前
17秒前
华仔应助ENIX采纳,获得10
17秒前
DL应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249