A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China

多光谱图像 苔藓 遥感 干旱 环境科学 高光谱成像 多光谱模式识别 荒漠化 随机森林 土壤科学 地质学 计算机科学 生态学 生物 机器学习 古生物学
作者
Xiang Chen,Tao Wang,Shulin Liu,Fei Peng,Atsushi Tsunekawa,Wenping Kang,Zichen Guo,Kun Feng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1286-1286 被引量:16
标识
DOI:10.3390/rs11111286
摘要

Biological soil crusts (BSCs) play an essential role in desert ecosystems. Knowledge of the distribution and disappearance of BSCs is vital for the management of ecosystems and for desertification researches. However, the major remote sensing approaches used to extract BSCs are multispectral indices, which lack accuracy, and hyperspectral indices, which have lower data availability and require a higher computational effort. This study employs random forest (RF) models to optimize the extraction of BSCs using band combinations similar to the two multispectral BSC indices (Crust Index-CI; Biological Soil Crust Index-BSCI), but covering all possible band combinations. Simulated multispectral datasets resampled from in-situ hyperspectral data were used to extract BSC information. Multispectral datasets (Landsat-8 and Sentinel-2 datasets) were then used to detect BSC coverage in Mu Us Sandy Land, located in northern China, where BSCs dominated by moss are widely distributed. The results show that (i) the spectral curves of moss-dominated BSCs are different from those of other typical land surfaces, (ii) the BSC coverage can be predicted using the simulated multispectral data (mean square error (MSE) < 0.01), (iii) Sentinel-2 satellite datasets with CI-based band combinations provided a reliable RF model for detecting moss-dominated BSCs (10-fold validation, R2 = 0.947; ground validation, R2 = 0.906). In conclusion, application of the RF algorithm to the Sentinel-2 dataset can precisely and effectively map BSCs dominated by moss. This new application can be used as a theoretical basis for detecting BSCs in other arid and semi-arid lands within desert ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的千万完成签到,获得积分10
1秒前
1秒前
科研通AI5应助无言务实采纳,获得10
2秒前
111完成签到,获得积分20
2秒前
Jasper应助黄少阳采纳,获得10
3秒前
4秒前
iu发布了新的文献求助10
4秒前
Ai发布了新的文献求助10
5秒前
mynuongga发布了新的文献求助10
7秒前
研友_VZG7GZ应助qq采纳,获得10
7秒前
123有熊猫完成签到,获得积分10
8秒前
8秒前
和光同尘完成签到 ,获得积分10
10秒前
李健的小迷弟应助FGG采纳,获得10
10秒前
伍柒完成签到 ,获得积分10
10秒前
科研通AI6应助好好学习采纳,获得10
12秒前
12秒前
能干哈密瓜完成签到,获得积分10
12秒前
yuan发布了新的文献求助10
12秒前
Orange应助xiangxing采纳,获得10
13秒前
15秒前
feitian201861完成签到,获得积分10
15秒前
香草冰激凌关注了科研通微信公众号
16秒前
popooo完成签到,获得积分10
16秒前
orixero应助123有熊猫采纳,获得10
17秒前
黄少阳完成签到,获得积分20
18秒前
18秒前
彩色的小懒虫完成签到,获得积分10
18秒前
明哲派完成签到,获得积分10
19秒前
yutos关注了科研通微信公众号
19秒前
Akim应助敏感的凝天采纳,获得10
19秒前
无言务实发布了新的文献求助10
19秒前
小熊完成签到,获得积分10
19秒前
21秒前
21秒前
充电宝应助ling采纳,获得10
21秒前
22秒前
lyt发布了新的文献求助10
22秒前
李健的小迷弟应助poppy采纳,获得10
22秒前
Arya520发布了新的文献求助10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215394
求助须知:如何正确求助?哪些是违规求助? 4390543
关于积分的说明 13670192
捐赠科研通 4252424
什么是DOI,文献DOI怎么找? 2333060
邀请新用户注册赠送积分活动 1330703
关于科研通互助平台的介绍 1284510