A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China

多光谱图像 苔藓 遥感 干旱 环境科学 高光谱成像 多光谱模式识别 荒漠化 随机森林 土壤科学 地质学 计算机科学 生态学 生物 机器学习 古生物学
作者
Xiang Chen,Tao Wang,Shulin Liu,Fei Peng,Atsushi Tsunekawa,Wenping Kang,Zichen Guo,Kun Feng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1286-1286 被引量:16
标识
DOI:10.3390/rs11111286
摘要

Biological soil crusts (BSCs) play an essential role in desert ecosystems. Knowledge of the distribution and disappearance of BSCs is vital for the management of ecosystems and for desertification researches. However, the major remote sensing approaches used to extract BSCs are multispectral indices, which lack accuracy, and hyperspectral indices, which have lower data availability and require a higher computational effort. This study employs random forest (RF) models to optimize the extraction of BSCs using band combinations similar to the two multispectral BSC indices (Crust Index-CI; Biological Soil Crust Index-BSCI), but covering all possible band combinations. Simulated multispectral datasets resampled from in-situ hyperspectral data were used to extract BSC information. Multispectral datasets (Landsat-8 and Sentinel-2 datasets) were then used to detect BSC coverage in Mu Us Sandy Land, located in northern China, where BSCs dominated by moss are widely distributed. The results show that (i) the spectral curves of moss-dominated BSCs are different from those of other typical land surfaces, (ii) the BSC coverage can be predicted using the simulated multispectral data (mean square error (MSE) < 0.01), (iii) Sentinel-2 satellite datasets with CI-based band combinations provided a reliable RF model for detecting moss-dominated BSCs (10-fold validation, R2 = 0.947; ground validation, R2 = 0.906). In conclusion, application of the RF algorithm to the Sentinel-2 dataset can precisely and effectively map BSCs dominated by moss. This new application can be used as a theoretical basis for detecting BSCs in other arid and semi-arid lands within desert ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助阔达的紫山采纳,获得10
刚刚
忐忑的方盒完成签到 ,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
传奇3应助饼干碎采纳,获得10
2秒前
2305814008发布了新的文献求助10
2秒前
Sandy完成签到 ,获得积分10
3秒前
传奇3应助彼黍离离采纳,获得30
3秒前
4秒前
111完成签到,获得积分10
5秒前
铃木发布了新的文献求助10
6秒前
科研通AI5应助无聊的小蕾采纳,获得10
6秒前
端庄向雁发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
10秒前
天天快乐应助Balance Man采纳,获得10
10秒前
A_T_O_M_I_C发布了新的文献求助10
10秒前
隐形曼青应助ikun采纳,获得10
11秒前
浮游应助墨鱼大王采纳,获得10
12秒前
夙生缘起完成签到,获得积分20
12秒前
12秒前
14秒前
量子星尘发布了新的文献求助30
14秒前
搜集达人应助yixifu采纳,获得10
14秒前
李健应助fqf采纳,获得10
15秒前
柠檬发布了新的文献求助10
16秒前
16秒前
sunqian完成签到,获得积分10
16秒前
我是老大应助一小盆芦荟采纳,获得10
16秒前
17秒前
林黛玉完成签到 ,获得积分10
17秒前
17秒前
饼干碎发布了新的文献求助10
19秒前
Jerrylove发布了新的文献求助50
20秒前
forest完成签到,获得积分10
20秒前
温存发布了新的文献求助10
21秒前
小马甲应助哈哈哈嗝采纳,获得10
23秒前
23秒前
红茶猫完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368