A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China

多光谱图像 苔藓 遥感 干旱 环境科学 高光谱成像 多光谱模式识别 荒漠化 随机森林 土壤科学 地质学 计算机科学 生态学 生物 机器学习 古生物学
作者
Xiang Chen,Tao Wang,Shulin Liu,Fei Peng,Atsushi Tsunekawa,Wenping Kang,Zichen Guo,Kun Feng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1286-1286 被引量:16
标识
DOI:10.3390/rs11111286
摘要

Biological soil crusts (BSCs) play an essential role in desert ecosystems. Knowledge of the distribution and disappearance of BSCs is vital for the management of ecosystems and for desertification researches. However, the major remote sensing approaches used to extract BSCs are multispectral indices, which lack accuracy, and hyperspectral indices, which have lower data availability and require a higher computational effort. This study employs random forest (RF) models to optimize the extraction of BSCs using band combinations similar to the two multispectral BSC indices (Crust Index-CI; Biological Soil Crust Index-BSCI), but covering all possible band combinations. Simulated multispectral datasets resampled from in-situ hyperspectral data were used to extract BSC information. Multispectral datasets (Landsat-8 and Sentinel-2 datasets) were then used to detect BSC coverage in Mu Us Sandy Land, located in northern China, where BSCs dominated by moss are widely distributed. The results show that (i) the spectral curves of moss-dominated BSCs are different from those of other typical land surfaces, (ii) the BSC coverage can be predicted using the simulated multispectral data (mean square error (MSE) < 0.01), (iii) Sentinel-2 satellite datasets with CI-based band combinations provided a reliable RF model for detecting moss-dominated BSCs (10-fold validation, R2 = 0.947; ground validation, R2 = 0.906). In conclusion, application of the RF algorithm to the Sentinel-2 dataset can precisely and effectively map BSCs dominated by moss. This new application can be used as a theoretical basis for detecting BSCs in other arid and semi-arid lands within desert ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小尹采纳,获得10
刚刚
rita4616发布了新的文献求助20
1秒前
2秒前
李健的小迷弟应助wangqixin采纳,获得10
2秒前
2秒前
是哇哦完成签到,获得积分10
2秒前
2秒前
科研通AI5应助落寞小蘑菇采纳,获得10
2秒前
星期天发布了新的文献求助10
3秒前
芋泥桃桃发布了新的文献求助10
3秒前
赘婿应助科研兵采纳,获得10
4秒前
王一完成签到 ,获得积分10
4秒前
田様应助ycy采纳,获得10
5秒前
负责之柔完成签到,获得积分10
5秒前
5秒前
Jasper应助zzzyyy采纳,获得10
5秒前
6秒前
6秒前
yangmiemie发布了新的文献求助10
6秒前
TS6539发布了新的文献求助10
7秒前
tt发布了新的文献求助10
7秒前
KK发布了新的文献求助30
9秒前
英姑应助rita4616采纳,获得20
9秒前
善学以致用应助微笑向卉采纳,获得10
9秒前
9秒前
Ikkyu发布了新的文献求助30
10秒前
huhu完成签到 ,获得积分10
10秒前
夏d发布了新的文献求助10
11秒前
11秒前
夜盏丿完成签到,获得积分10
12秒前
双勾玉发布了新的文献求助10
12秒前
丘比特应助生动友容采纳,获得10
12秒前
科研通AI5应助qi采纳,获得10
12秒前
隐形的幻香完成签到,获得积分10
13秒前
研友_8yPeXZ发布了新的文献求助200
13秒前
yangmiemie完成签到,获得积分10
14秒前
善学以致用应助不想说采纳,获得10
14秒前
Ava应助不想说采纳,获得10
14秒前
香蕉觅云应助邓桂灿采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589637
求助须知:如何正确求助?哪些是违规求助? 4004674
关于积分的说明 12399052
捐赠科研通 3681704
什么是DOI,文献DOI怎么找? 2029251
邀请新用户注册赠送积分活动 1062809
科研通“疑难数据库(出版商)”最低求助积分说明 948455