神经认知
计算机科学
稳健性(进化)
纵向数据
比例危险模型
疾病
阿尔茨海默病神经影像学倡议
神经影像学
人工智能
机器学习
纵向研究
数据挖掘
阿尔茨海默病
医学
认知
内科学
精神科
基因
病理
化学
生物化学
摘要
This paper is motivated by combining serial neurocognitive assessments and other clinical variables for monitoring the progression of Alzheimer's disease (AD). We propose a novel framework for the use of multiple longitudinal neurocognitive markers to predict the progression of AD. The conventional joint modeling longitudinal and survival data approach is not applicable when there is a large number of longitudinal outcomes. We introduce various approaches based on functional principal component for dimension reduction and feature extraction from multiple longitudinal outcomes. We use these features to extrapolate the health outcome trajectories and use scores on these features as predictors in a Cox proportional hazards model to conduct predictions over time. We propose a personalized dynamic prediction framework that can be updated as new observations collected to reflect the patient's latest prognosis, and thus intervention could be initiated in a timely manner. Simulation studies and application to the Alzheimer's Disease Neuroimaging Initiative dataset demonstrate the robustness of the method for the prediction of future health outcomes and risks of target events under various scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI