亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How Much Data Is Sufficient to Learn High-Performing Algorithms?

计算机科学 算法
作者
Maria-Florina Balcan,Dan DeBlasio,Travis Dick,Carl Kingsford,Tüomas Sandholm,Ellen Vitercik
出处
期刊:Journal of the ACM [Association for Computing Machinery]
卷期号:71 (5): 1-58 被引量:13
标识
DOI:10.1145/3676278
摘要

Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for the user to tune. Alternatively, parameters may be tuned implicitly within the proof of a worst-case approximation ratio or runtime bound. Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that a data-driven approach to parameter tuning can lead to significant improvements in performance. This approach uses a training set of problem instances sampled from an unknown, application-specific distribution and returns a parameter setting with strong average performance on the training set. We provide techniques for deriving generalization guarantees that bound the difference between the algorithm’s average performance over the training set and its expected performance on the unknown distribution. Our results apply no matter how the parameters are tuned, be it via an automated or manual approach. The challenge is that for many types of algorithms, performance is a volatile function of the parameters: slightly perturbing the parameters can cause a large change in behavior. Prior research [e.g., 12 , 16 , 20 , 62 ] has proved generalization bounds by employing case-by-case analyses of greedy algorithms, clustering algorithms, integer programming algorithms, and selling mechanisms. We streamline these analyses with a general theorem that applies whenever an algorithm’s performance is a piecewise-constant, piecewise-linear, or—more generally— piecewise-structured function of its parameters. Our results, which are tight up to logarithmic factors in the worst case, also imply novel bounds for configuring dynamic programming algorithms from computational biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zert发布了新的文献求助10
3秒前
认真的奇异果完成签到 ,获得积分10
5秒前
xinxin完成签到,获得积分10
10秒前
华仔应助evermore采纳,获得10
13秒前
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得30
18秒前
23秒前
evermore完成签到,获得积分10
25秒前
兴尽晚回舟完成签到 ,获得积分10
26秒前
evermore发布了新的文献求助10
28秒前
风与沙的边缘完成签到,获得积分10
32秒前
40秒前
43秒前
Mingyue123发布了新的文献求助10
46秒前
Mingyue123完成签到,获得积分10
58秒前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
ywy发布了新的文献求助10
1分钟前
1分钟前
Blaseaka完成签到 ,获得积分0
1分钟前
1分钟前
caca完成签到,获得积分0
2分钟前
顾矜应助xuan采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
乐乐应助Fishchips采纳,获得10
2分钟前
liuliu完成签到,获得积分20
2分钟前
脑洞疼应助Zert采纳,获得10
2分钟前
2分钟前
小山己几完成签到,获得积分10
2分钟前
眯眯眼的山柳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
1577发布了新的文献求助10
2分钟前
兴奋秋珊完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346219
求助须知:如何正确求助?哪些是违规求助? 4480951
关于积分的说明 13947038
捐赠科研通 4378626
什么是DOI,文献DOI怎么找? 2405984
邀请新用户注册赠送积分活动 1398546
关于科研通互助平台的介绍 1371163