骨关节炎
生物
全基因组关联研究
表达数量性状基因座
生物信息学
基因
遗传学
医学
单核苷酸多态性
病理
基因型
替代医学
作者
Ioanna Tachmazidou,Konstantinos Hatzikotoulas,Lorraine Southam,Jorge Esparza-Gordillo,Valeriia Haberland,Jie Zheng,Toby Johnson,Mine Koprulu,Eleni Zengini,Julia Steinberg,J. Mark Wilkinson,Sahir Bhatnagar,Joshua Hoffman,Natalie Buchan,Dániel Süveges,Laura M. Yerges-Armstrong,George Davey Smith,Tom R. Gaunt,Robert A. Scott,Linda McCarthy,Eleftheria Zeggini
出处
期刊:Nature Genetics
[Springer Nature]
日期:2019-01-21
卷期号:51 (2): 230-236
被引量:425
标识
DOI:10.1038/s41588-018-0327-1
摘要
Osteoarthritis is the most common musculoskeletal disease and the leading cause of disability globally. Here, we performed a genome-wide association study for osteoarthritis (77,052 cases and 378,169 controls), analyzing four phenotypes: knee osteoarthritis, hip osteoarthritis, knee and/or hip osteoarthritis, and any osteoarthritis. We discovered 64 signals, 52 of them novel, more than doubling the number of established disease loci. Six signals fine-mapped to a single variant. We identified putative effector genes by integrating expression quantitative trait loci (eQTL) colocalization, fine-mapping, and human rare-disease, animal-model, and osteoarthritis tissue expression data. We found enrichment for genes underlying monogenic forms of bone development diseases, and for the collagen formation and extracellular matrix organization biological pathways. Ten of the likely effector genes, including TGFB1 (transforming growth factor beta 1), FGF18 (fibroblast growth factor 18), CTSK (cathepsin K), and IL11 (interleukin 11), have therapeutics approved or in clinical trials, with mechanisms of action supportive of evaluation for efficacy in osteoarthritis.
科研通智能强力驱动
Strongly Powered by AbleSci AI