Long short-term memory-based deep recurrent neural networks for target tracking

计算机科学 跟踪(教育) 人工神经网络 人工智能 期限(时间) 运动(物理) 机器学习 循环神经网络 数据挖掘 心理学 教育学 量子力学 物理
作者
Chang Gao,Junkun Yan,Shenghua Zhou,Pramod K. Varshney,Hongwei Liu
出处
期刊:Information Sciences [Elsevier]
卷期号:502: 279-296 被引量:77
标识
DOI:10.1016/j.ins.2019.06.039
摘要

Target tracking is a difficult estimation problem due to target motion uncertainty and measurement origin uncertainty. In this paper, we consider the target tracking problem in the presence of only target motion uncertainty. The traditional approaches to address this uncertainty, such as multiple model approaches, can suffer performance degradation when there is a model mismatch. The statistical accuracy of conventional model-based methods is also usually limited because of the measurement errors and insufficient data for the estimation. In this paper, deep neural network-based methods are proposed to handle target motion uncertainty due to their strong capability of fitting any mapping as long as there are sufficient training data. Specifically, a recurrent neural network-based structure is proposed to estimate the true states that is consistent with the sequential manner of target tracking. In addition, it is expected that better performance will be achieved due to access to true states during the training of the networks. We propose two networks that are based on different principles and are capable of real-time tracking. An approach to further reduce the computational load is also introduced. Simulation results show that the proposed methods can handle the target motion uncertainty well and provide better estimation accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士酱完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
乐乐应助今天不加班采纳,获得10
2秒前
结实灭男发布了新的文献求助10
2秒前
星辰大海应助lxs159753采纳,获得10
2秒前
权秋尽发布了新的文献求助10
3秒前
Criminology34应助焦雯瑶采纳,获得10
3秒前
进步面包笑哈哈应助咻咻采纳,获得10
3秒前
蒲公英完成签到,获得积分10
3秒前
3秒前
天天快乐应助xaa采纳,获得10
4秒前
4秒前
深情安青应助zz采纳,获得10
4秒前
dd发布了新的文献求助10
4秒前
ccchao发布了新的文献求助10
5秒前
科研通AI6.1应助liuzhanyu采纳,获得10
5秒前
兴十一发布了新的文献求助10
6秒前
Owen应助DaemonUUU采纳,获得10
6秒前
8秒前
bruce完成签到,获得积分10
8秒前
菜菜发布了新的文献求助10
8秒前
wanci应助ww采纳,获得10
9秒前
9秒前
YY完成签到,获得积分10
9秒前
10秒前
今后应助认真的寒香采纳,获得10
10秒前
11秒前
机灵水池完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
seaboy3完成签到,获得积分10
15秒前
15秒前
酷波er应助呆一起采纳,获得10
15秒前
包妹完成签到,获得积分10
16秒前
666完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082